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Preface 
"I prefer to view formal methods as tools. 

the use of which might be helpful." 
E. W. Dijkstra 

Algebraic specifications are about to be accepted by industry. Many 
projects in which algebraic specifications have been used as a design tool 
have been carried out. What prevents algebraic specifications from 
breaking through is the absence of introductory descriptions and tools 
supporting the construction of algebraic specifications. On the one hand. 
interest from industry will stimulate people to make introductions and 
tools. whereas on the other hand the existence of introductions and tools 
will stimulate industry to use algebraic specifications. This book should be 
seen as a contribution towards creating this virtuous circle. The book will 
be of interest to software designers and programmers. It can also be used 
as material for an introductory course on algebraic specifications and 
software engineering at undergraduate or graduate level. 

Nowadays. there is general agreement that in large software projects 
appropriate specifications are a must in order to obtain quality software. 
Informal specifications alone are certainly not appropriate because they are 
incomplete. inconsistent. inaccurate and ambiguous and they rapidly 
become bulky and therefore useless. The only way to overcome this 
problem is to use formal specifications. An important remark here is that a 
specification formalism (language) alone is not sufficient. What is also 
needed is a design method to write specifications in that formalism. 

Formal specifications (languages and methods) are a promising topic 
within software engineering. They play the role of a contract between 
implementors and customers. They are useful as program documentation 
of the abstractions being made during the design phase. They serve as a 
mechanism for generating questions about design decisions and intrinsic 
properties of the software system. thus improving understanding between 
implementors and customers. Formal specifications form the starting
point for verifications and validations. Finally. they enable rapid 
prototyping. Three important categories of formal specifications are: pre
and post-conditions. denotational semantics. and algebraic specifications. 
Our belief is that in software design these formalisms are not competitors 
and that each formalism must be used where it is most appropriate. This 
book centres around algebraic specifications. 
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Formal specifications in the design of large software are a challenging 
topic because a number of psychological barriers have to be broken. 
Formal specifications often have a bad reputation among designers ahd 
implementors in industry. Formal often stands for "How do we make the 
simple cases intricate?" and "How do we give a program a scientific and 
academic gloss so that it looks mysterious for others?". First of all. these 
people are hardly to be blamed since very little has been done on the 
diffusion of the practical (software engineering) aspects of the theoretical 
results. Most literature on formal specifications is of a theoretical nature 
and is inaccessible for most practitioners. 

In order to bridge the gap between theory and practice. there is a need 
for good introductions. Writing such an introduction for one particular 
class of specifications. namely algebraic specifications. is the aim of this 
book. In this book we (1) show the benefits from using algebraic 
specifications. (2) present an algebraic specification language and a method 
to use this language. (3) explain the underlying mathematical foundations 
of algebraic specifications and the consequences of the theory for the 
practitioner. and (4) present not only small examples but also case studies 
of a reasonable complexity. 

The practitioner who expects just a number of recipes to construct 
formal specifications will be disappointed while reading this book. It is 
our strong belief that learning to use formal specifications is first of all a 
matter of education rather than training. The process of constructing 
algebraic specifications (and formal specifications in general) can only be 
successful if one has at one's disposal a minimal knowledge of the 
underlying mathematical foundations. This knowledge is necessary to be 
aware of what precisely one is doing when writing algebraic specifications. 

In our book an attempt is made to integrate the mathematical 
foundations and the engineering aspects of algebraic specifications. The 
theoretical concepts are the starting-point for the design of a practical 
specification language. The impact of traditional principles of software 
engineering and advanced features of current high level programming 
languages on the development of the specification language is discussed. 
The main characteristic of the language is that it enables the design of 
constructive specifications; this is useful for rapid prototyping. Other 
important characteristics of the strongly typed specification language are 
its module mechanism and its general parameterization concept. Finally, 
the language contains an elegant notation supporting an explicit error 
detection and error handling method. Many case studies have been carried 
out. including an industrial specification of a call handling system (p ABX). 
These case studies show that an algebraic specification as a formalism is 
not sufficient. It must be accompanied by a design method. The design 
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Preface IX 

method used for the PABX is object-oriented. In this book a contribution 
is made to abstract implementations as well. Finally, programming 
environments and rapid prototyping supporting the construction of 
algebraic specifications are briefly discussed. 
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1. Introduction 

"A problem well defined is half solved." 
old adage 

1.1 Software Engineering 

The aim of software engineering is to construct software of high quality. 
By software we mean large programs. Most design and programming 
techniques directed towards the development of small programs cannot 
simply be generalized to be applicable to large scale software development. 
Qualities, sometimes called software engineering criteria, are divided into 
two categories: external and internal qualities. The external qualities we 
are particularly interested in are correctness, robustness, extendibility, 
reusability and efficiency. The internal qualities dealt with in this book 
are modularity and continuity. Each of these qualities is now briefly 
discussed. More detailed discussions can be found in literature. Some of 
the many authors dealing with the construction of quality software are 
[Boehm78, De Remer76, Parnas72b, Meyer88, Liskov86, Jackson75, 
Jackson83]. 

Correctness or reliohility is the ability of a software system to perform 
its services as defined by its requirements definition and specification. 

Robustness is the ability of a software system to continue to behave 
reasonably even in abnormal situations. 

Extendibility is the ease with which a software system can be adapted to 
changes of its requirements definition and specification. 

Reusability is the ability of software modules to be reused as 
components to construct new software for other applications. 

Efficiency is the ability of software to make good use of hardware 
resources and operating system services. 

Modularity is the property of software to be divided into more or less 
autonomous components connected with a coherent and simple interface. 
Modularity is not only important at the implementation (program) level 
but also at the design (specification) level. At the implementation level, 
examples of modules are procedures, data, data types, iterators and 
processes. Procedures are often called actions, subroutines, functions and 
subprograms. Data types are known as packages in Ada [Ada83], classes in 
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Smalltalk 80 [Goldberg83], clusters in CLU [Liskov86] and modules in
Modula-2 [Wirth82]. An important aspect of modularity -is information
hiding. More details on modularity aspects of software can be found in
[Parnas72b, Meyer88, Liskov86, Yourdon79].

Continuity is a quality that yields software systems that won-t need
drastic modifications because of small changes in the requirements
definition. This means that small changes in the requirements should
affect only one or a few modules but not the structure as a whole. So,
continuity is heavily related to modularity. Since any software system is
likely to evolve, especially during the maintenance phase of the software
life cycle Cafter the system has been released), continuity is an internal
quality that plays a crucial role in software development.

1.2 Software Life Cycle

In a software project one can distinguish several phases of its life cycle, as
shown in Fig. 1/1.

e
, problem analysis phase

requirements definition

t design phase

specification

t implementation phase

program

t test phase

working program (release)

, maintenance phase

Fig. 1/1

Since the working scheme as shown in Fig. 1/1 is in fact schematic, it can
be misleading. It therefore needs a few comments. Firstly, testing is an
activity that is not located in one single phase but it is spread over all
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phases of the life cycle. Secondly, the maintenance phase covers not only 
repairing activities of errors but also any changes due to the evolution of 
the software system before and after the program has been released. 
Maintenance usually involves many iterations over the other phases. 
Following [Boehm76, Lientz80], maintenance costs cover approximately 
50-75 % of the total cost of software. One of the key benefits from using 
formal specifications is the detection of design errors in an early stage of 
the software development. Structuring the formal specification into the 
appropriate modules will make software easier to modify. In this way, 
maintenance can be kept under control, avoiding an abrupt increase of the 
program entropy whenever changes have to be made in the requirements 
definition and specification. 

1.3 Abstract Data Types and Specifications 

In literature a number of techniques to construct quality software can be 
found. By quality software we mean software that meets the software 
engineering criteria or more exactly a trade-off between these criteria, since 
some of these criteria are in conflict. Examples of such software 
engineering techniques are Jackson's system development [Jackson83], 
Yourdon's structured design [Yourdon79] and structured analysis [De 
Marc078]. All these methods have one important aspect in common: 
software is structured around data rather than around functions. The 
reason for this choice is that functions are not the most stable part of a 
system. Structuring around data yields systems with a higher degree of 
continuity and reusability. The key point in structured design of software 
systems is to look for abstract data types, abbreviated ADTs in the sequel. 
Roughly speaking, a specification of an ADT describes a class of data 
structures by listing the services available on the data structures, together 
with the intrinsic properties of these services. 

By specifying an ADT. we do not care lww a data structure is actually 
represented or 1ww each operation is implemented. What matters is what 
the data structure signifies at the level of a customer who wants to make 
instantiations (individual data structures) of the data type for further use 
in his program. To illustrate the concept of ADT. let us take the class of 
stacks of natural numbers, called Stack. The specification of Stack will 
list the services newstack. push. isnewstack. pop and top. Furthermore, 
given an object of type Stack. it describes how these services must be called 
for that object and it describes the intrinsic properties of these services. 
An example of such a property for Stack is 
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pope push( s. n ) ) == s: 

where s is any Stack object and n is any natural number. This property 
simply expresses that pushing a natural number n on a stack s. followed 
by popping the resulting stack. yields the original stack s. The identifiers s 
and n are variables ranging over instantiations (objects) of types Stack and 
Nat respectively. 

Writing specifications of ADTs is an activity that is located in the 
design phase of the software life cycle. Specifications are designed in a 
modular way. Roughly speaking. with each specification module in the 
design phase corresponds a program module in the implementation phase. 
Specification modules. unlike program modules. make abstraction of all 
irrelevant details of data representation and procedure implementation. 
An important remark is that finding the appropriate set of specification 
modules is not always an easy job. The choice of the modules must be 
such that complexity of the module interfaces is minimal and that 
continuity of the software system is maximal. Mostly. a trade-off 
between these criteria has to be strived for. 

1.4 Why Specifications? 

A specification may serve different purposes. 

• Specifications are obviously used for program documentation. They 
describe the abstractions being made. 

• Specifications serve as a mechanism for generating questions. The 
construction of specifications forces the designers to think about the 
requirements definition and the intrinsic properties and functionalities 
of the software system to be designed. In this way the construction of 
specifications helps the designers to better understand these 
requirements and to detect design inconsistencies. incompleteness and 
ambiguities in an early stage of software development. Such a better 
understanding is already an important benefit from the specification 
activity. 

• A specification can be considered as a kind of contract between the 
designers of a program and its customers. It describes the obligations 
and rights of both parties. A specification binds customers and 
designers by expressing the conditions under which the services of a 
module are legitimate and by defining the results when calling these 
services. 
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• Specifications are a powerful tool in the development of a program 
(module) during its software life cycle. The presence of a good 
specification helps not only designers, but also implementors and 
maintainers. The modularity of the specification must be reflected in 
the modularity of the program. A specification serves as a blueprint 
for the implementation phase, where a program is written in some 
executable language. In most software projects, the language used is of 
an imperative nature. Unlike specifications, programs deal with 
implementational details as memory representation (such as arrays, 
records, variant records, linked lists), memory management (such as 
dispose in Pascal, free in PL1 and unchecked deallocation in Ada) and 
efficient On time and space) coding of the system services. 

Writing a specification must not be seen as a separate phase in the 
construction of software. Also, specifications must be adapted each 
time modifications are introduced in any of the other phases of the 
software life cycle. Especially, specifications have to be updated during 
the maintenance phase taking into account the evolution of the software 
system . 

• With regard to program validation, specifications may be very helpful 
to collect test cases to form a validation suite for the software system. 

1.5 Why Formal Specifications? 

Specifications must be at the same time compact, complete, consistent, 
precise and unambiguous. From experience, it has turned out that a 
natural language is not a good candidate as a specification language. In 
industry, a lot of effort has been devoted to writing informal specifications 
for software systems, but little or no attention is paid to these 
specifications when they are badly needed, i.e. during maintenance of the 
software. Why is it so ? Specifications in a natural language rapidly 
become bulky, even to such an extent that nobody has the courage to dig 
into them. Moreover, such specifications are at many places inaccurate, 
incomplete and ambiguous. It must be very discouraging to discover after 
a long search that the answer can only be obtained by running the system 
with the appropriate input data. The tragedy in software development is 
that once a program modification is made without adapting the 
corresponding specification, the whole specification becomes obsolete for 
the rest of the software life cycle and the whole specification effort is lost. 
Having a non-existent or an obsolete specification is the reason why there 
exist so many software systems the behaviour of which nobody can 
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exactly derive in a reasonable lapse of time. It also explains the many 
situations where services of software systems are marketed and advertised 
that in reality do not exist. Notice that running the program with the 
appropriate input can only give partial answers to questions about the 
system behaviour. 

We do not assert that informal specifications are useless. They may be 
very useful as a first introduction to a software system and as comment to 
enhance the readability of the formal specifications. Formal and informal 
specifications must not be regarded as competitive but rather as 
complementary. 

Formal specifications, unlike informal ones, enable the designer to use 
rigorous mAthemAtical reasoning. Properties of the specification (and thus 
of the program to be constructed at a later stage) can be proved to be true 
just as theorems can be proved in mathematics. In this way, design errors 
(e.g., inconsistencies and incompleteness) can be detected in an early stage 
of the development. Another aspect of mathematical reasoning with 
formal specifications is the ability to verify formally that the 
implementation (program) satisfies its specification. Both aspects of 
mathematical reasoning have to do with what is called program correctness 
proofs. 

There is an intensive debate around rigorous mathematical reasoning. 
Algebraic specifications enable the designer to prove certain properties of 
his design and to prove that the implementation (program) meets its 
specification. We must admit that this is easier said than done. Most 
examples in literature apply proof techniques to small examples. For large 
software, correctness proofs would require practical tools such as 
intelligent theorem provers. Unfortunately, automatic theorem proving 
for large software is still beyond today's program proving technology. 
However correctness proofs of parts of the system and verification of some 
of the properties are feasible. The general rule is to prove and verify as 
much as possible. It is a well-known fact that correctness proofs and 
verification show the absence of errors, whereas testing only indicates the 
presence of errors for some sample input of the system. 

Formal specifications that are constructive, can be directly executed, 
although with poor performance. Then, formal specifications are used in a 
process called rapid prototyping. With constructive formal specifications, 
one is able to design top-down, to verify top-down and even to test top
down. The notion of top-down means here that the specification is treated 
before any instruction of the implementation has been written. A benefit 
from making constructive formal specifications that certainly will interest 
the practitioner, is that this kind of rapid prototyping enables designers 
and customers to get user feedback' and hands-on experience with the 



www.manaraa.com

Sec. 1.5 Why Formal Specifications? 7 

software system before the implementation already gets started. In this 
way, design errors due to misunderstandings between designers and 
customers, and lack of understanding of the service mechanisms to be 
provided by the system can be detected and corrected at an early stage. 
With the concepts of constructive formal specifications and direct 
implementation. the boundaries between specifications and 
implementations are not very sharp. Both specifications and 
implementations are in fact programs, but the former are of a more 
abstract level than the latter. Moreover, in the life cycle of a software 
system there may be more than two levels of abstraction. A module may 
serve as a specification for the lower level and at the same time as an 
implementation for the higher one. 

Many specification formalisms can be found in literature [Milgrom88]. 
In the axiomatic method, the behaviour of a program is characterized by 
pre- and post-conditions. Its pioneers are Floyd, Hoare and Dijkstra 
[Floyd67, Hoare72, Dijkstra76]. Another well-known formalism is 
denotational semantics [Stoy77, Gordon79]. Especially the use of high 
order functions is very useful to describe the powerful control structures 
of programming languages. Since the mid seventies, a new formalism 
based on the concept of abstract data types has been developed. As many
sorted algebras are the underlying mathematical model, such specifications 
are called algebraic specifications. In this book, we will only concentrate 
on algebraic specifications. 

1.6 Algebraic Specifications, an Intuitive 
Approach 

Recall that an ADT is a class of data structures described by an external 
view, i.e. available services and properties of these services. An algebraic 
specification is a mathematical description of such an ADT. As an 
introduction, we now intuitively discuss the abstract data type Stack, 
formally described by the algebraic specification shown in Fig. 112. A 
more elaborate discussion of this example will be given in the following 
chapters. 

The sort(s) part lists the names of the abstract data types being 
described. In this example there is only one type, 'namely Stack. The 
operations part lists the services available on instances of the type Stack 
and syntactically describes how they have to be called. These parts are 
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sort Stack; 
operations 

news tack: - > Stack; 
push: Stack * Nat -> Stack; 
is news tack: Stack - > Baal; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s: Stack; n: Nat; 
axioms 

isnewstack( news tack ) == true; 
isnewstack( push( s, n) ) == false; 
pope news tack ) = news tack; 
pope push( s, n ) ) == s; 
tope news tack ) == zero; 
tope push( s, n ) ) == n; 

Fig. 112 

called the signature of the algebraic specification. As an example. 

push: Stack * Nat - > Stack; 

Chap. 1 

means that push is a function with two arguments. of respective types 
Stack and Nat. and yields a result of type Stack. Notice that newstack is a 
nullary function. i.e. has no arguments. and yields a result of type Stack. 
It is also called a constant. The term function here is used in the 
mathematical sense. not in the context of programming. So. functions in 
algebraic specification have no side-effects. In our example. push takes as 
arguments a stack s and a natural number n and produces a new stack 
which is identical to the input stack except for one more element on its top. 
Side-effects will be introduced at the implementation stage. when efficient 
programs for the services available on stacks are written. Implementing 
the algebraic specification. we usually do not want to copy the input stack 
for every call of push. The service push will be implemented as a 
procedure with the Stack parameter as a call by variable (sometimes 
termed call by reference). The side-effect of calling push consists in the 
direct modification of the input parameter of type Stack. Algebraic 
specifications are some sort of functional specifications. By systematically 
avoiding any kind of side-effects. properties of the abstract data type can 
be expressed in a simple and rigorous way. For the algebraic specifications. 
these properties will have the form of axioms (as explained later) and 
theorems (see Section 4.3). 

The axioms part formally describes the semantic properties of the 
algebraic specification. So far. the specification applies to any data 
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structure with services described by functions with the same signature. 
such as queues and lists. The axioms will restrict the specification towards 
stacks by listing the fundamental properties of stacks. One of these 
properties is described by the axiom 

pope push( s. n ) ) == s: 

This axiom was explained in Section 1.3. Another axiom is 

isnewstack( newstack ) == true: 

expressing that the function isnewstack applied to a newly created stack 
yields true. whereby true is a nullary function of the boolean values 
imported from another algebraic specification module. Import and export 
of algebraic specification modules and module dependency will be covered 
in Section 3.1. The variable n ranges over the set Nat of natural numbers. 
whose ADT is also defined elsewhere. As a last example. consider the 
axioms 

pope newstack ) == newstack: 
tope newstack ) == zero: 

This is a naive but correct specification of what happens when one pops an 
empty stack or takes the top element of an empty stack. Stack is specified 
in this way only to avoid the discussion of abnormal (exceptional) cases at 
this early stage. What we want is that the action pop applied to an empty 
stack yields some kind of erroneous stack and that the action top applied to 
an empty stack yields an erroneous natural number. We also want to 
decide whether further actions on an erroneous stack will keep the stack in 
its error state or transform the erroneous state back into a normal state. 
This latter process is called error recovery. Also more than one kind of 
erroneous stack will be possible to model. e.g .. overflow and underflow of 
stacks. Error handling and error recovery will be thoroughly discussed in 
Chapter 7. 

The algebraic specification of Stack expresses' only the essential 
properties of the Stack services without overspecifying. It makes 
abstraction from any Stack representation and service implementation 
details. It is overspecification that makes verification and rigorous 
reasoning difficult. Algebraic specifications provide a computational 
model with ADTs. As an example of such computatior.s. consider the 
following expressions 
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declare s1. s2: Stack; n: Nat; 
sl:= pope push( push( newstack. 5 ). 7 ) ); 
s2:= push( push( push( newstack. 0 ). tope sl ) ). 4 ); 
n:= top (pop( pope s2 ) ) ); 

Chap. 1 

By applying the axioms. successive simplifications may be performed. 
These algebraic simplifications can be carried out mechanically. After 
these simplifications have been carried out. the above expressions become: 

sl:= push( newstack. 5 ); 
tope sl ):= 5; 
s2:= push( push( push( newstack. 0 ). 5 ). 4 ); 
n:= 0; 

This kind of symbolic computation is heavily related to concepts such as 
constructivity. term rewriting and rapid prototyping. 

Furthermore. the book deals with a number of important design issues 
centred around specifications in general and algebraic specifications in 
particular. Some of the issues are constructivity versus non
constructivity. modularity. abstraction by parameterization. rigorous 
reasoning. error detection. error recovery and abstract implementations. 

1.7 Survey 

Chapter 2 discusses the mathematical foundations of algebraic 
specifications. ADTs are defined as many-sorted initial algebras. Due to 
these underlying mathematical concepts. algebraic specifications can be 
made accurate and unambiguous. They enable us to give a well-defined 
and implementation-independent meaning to an ADT. It is not our 
intention. however. to go deeply into mathematics. We are especially 
interested in the engineering aspects of formal specifications. The 
mathematical concepts are informally described and illustrated by many 
examples. Rigorous reasoning is obtained by equational reasoning and by 
induction. The power of the algebraic specification method is increased by 
using hidden functions. which can also be used as auxiliary functions. 

Chapter 3 deals with principles of software engineering. These 
principles are incorporated into the mathematical notation developed in 
Chapter 2. in order to obtain a practical specification language. 
Programming in this language results in modular. reliable. readable and 
reusable specifications. A technique of hierarchical specifications is 
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proposed, providing us with a modular specification method. Import and 
export clauses in modules form the interfaces between the modules and 
provide additional safety. The readability is enhanced by notational 
extensions. Another important feature is the possibility of parameterized 
specifications, resulting in more reusable and readable specifications. Also 
parameterized parameter passing is allowed. 

In Chapter 4 we restrict the specifications to constructive and semi
constructive ones in order to enable rapid prototyping. In this way, a style 
of specifying is proposed distinguishing between data and procedural 
abstraction. By introducing constraints that can be checked in a 
mechanical way, the chance of writing erroneous specifications can be 
reduced considerably. The specification will be considered as the input for 
a term rewriting system. 

In Chapter 5 a non-trivial case study, called the ferry problem, is 
discussed. This ferry problem is a generalization of the riddle of the 
farmer, the wolf. the goat and the cabbage. It is a nice example of 
abstraction by parameterization. A distinction will be made between the 
specification of the problem on the one hand (the what) and the 
specification of an implementation on the other hand (the how). 

One of the most challenging case studies we made is the formal 
specification of a substantial part of a call handling system, the lIT 5400 
BCS [Be1l85b]. In the specification abstraction is made from technical 
information about the ITT 5400 BCS (e.g., a user needs not to know it is 
based on a 16-bit micro-processor). Because of the considerable length of 
this industrial case study, we extracted for Chapter 6 a mini-PABX. This 
mini-PABX provides the two-party voice calls and the enquiry feature of 
the ITT 5400 BCS. The specification of the mini-PABX is based on an 
object-oriented design method. The resulting specification is highly 
modular and adaptable and therefore more readable. 

An explicit error detection and error handling mechanism for an 
algebraic specification language is described in Chapter 7. An elegant 
notation, directly supporting this error handling method, is introduced in a 
many-sorted initial algebra framework. Firstly, a safety function is 
provided for every sort. This function characterizes each object as being 
safe or unsafe. Secondly, axioms may contain markers that indicate to 
which kind of objects the axioms are applicable. The proposed notation is a 
trade-off between readability and capability to handle a large class of error 
situations. A major point is that the presented description of error 
handling promotes a two-step design method of algebraic specifications. In 
a first step the specification is given with error detection only, in a second 
step error handling is superimposed. 
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Chapter 8 treats a top-down implementation method for (semi-) 
constructive specifications of data types. called abstract implementations. 
First. a high level specification of the data type is produced in which 
abstraction is made from all irrelevant details. only the relevant properties 
are described. Next. an implementation for the specification can be 
constructed using specifications of other data types. In turn these 
specifications can be provided with implementations. and so on. If (semi-) 
constructive specifications are used. each level can be tested (rapid 
prototyping) before it is implemented. Furthermore. each level can be 
verified to be correct before it is implemented. 

Appendix A contains the complete ECF syntax of the presented 
specification language. An example of rapid prototyping. concerning the 
specification of the mini-P ABX of Chapter 6. can be found in Appendix B. 
Finally. an index of technical terms and a bibliography are given. 

Most chapters conclude with a survey of the literature. A lot of 
articles providing further information on underlying mathematical 
theories. proofs and examples. are referred to. An exhaustive bibliography 
on algebraic software specifications can be found in [Klaeren85. 
Schobbens89]. 

1.8 Historical Remarks on Algebraic 
Specifications 

The pioneers of algebraic specifications are Zilles [Zilles74]. Guttag 
[Guttag75] and the ADJ group [Goguen74] consisting of Goguen. Thatcher. 
Wagner and Wright. They all considered a software module representing 
an ADT as a many-sorted algebra. The basic argument for the algebraic 
approach is that such a software module has exactly the same structure as 
an algebra: the various sorts of data involved form sets and the operations 
of interest are functions among these sets [Meseguer85a]. 

During the last years. many different algebraic models have been 
proposed. The ADJ group [Goguen78] presented the theory of the (many
sorted) initial algebras. Final algebra semantics were discussed. e.g.. in 
[Wand79]. The idea of behavioural equivalence was introduced by 
[Giarratana76]. The Munich CIP-group [Partsch78. CIP85] took the class 
of all algebras fitting to a given specification as its semantics. The central 
idea of Sannella and Tarlecki [Sannella85b] is based on the fact that much 
work on algebraic specifications can be done independently of the 
particular logical system on which the specification formalism is based. 
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The first specification language based on algebraic specifications was 
CLEAR [Burstall77], where. among others. the concept of parameterized 
specifications was incorporated. Since then many other algebraic 
specification languages have been developed. The most popular ones are 
ACT ONE [Ehrig85] and the OBJ family [Goguen79. Goguen83. Goguen84c. 
Futatsugi85]. both based on many-sorted initial algebras. Algebraic 
specification languages may be considered as strongly-typed functional 
languages like Hope [Burstall80] or as rewrite rule languages [Huet80]. 

Topics about algebraic specifications discussed in literature include 
correctness. theorem proving. parameterizing. error handling and abstract 
implementations. Important work on power and limits of algebraic 
specifications is contained in [Majster77. Thatcher78. Bergstra81]. A 
combination of initial algebra semantics with Horn clause logic resulted in 
Eqlog [Goguen84d] and LPG [Bert86. Declerfayt89]. 

Algebraic specification techniques and languages have been successfully 
applied to the specification of systems ranging from basic data types as 
stacks and natural numbers [Guttag78a] to highly sophisticated software 
systems as a graphical programming language [Mallgren82] and the Unix 
file system [Bidoit87]. Algebraic specification techniques are used in the 
wide spectrum language CIP [CIP85]. which allows the derivation of 
correct software from formal requirements via design specifications down 
to a machine-oriented level using jumps and pointers. Another wide 
spectrum language that has an algebraic kernel is Larch [Guttag85]. At the 
moment. many researchers all over the world are involved in research in 
the field of algebraic specifications. Many Esprit Projects. e.g .. Gipe and 
Meteor [Bergstra87]. are covering topics related to algebraic specifications. 

More historical information about algebraic specifications can be found 
in [Kutzler83. Ehrig85. Futatsugi85]. 
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2. Abstract Data Types as Initial 
Algebras 

"Use theory to provide insight. use common sense and intuition 
where it is suitable. but fall back on the formal theory 

for support when difficulties and complexities arise." 
David Gries 

Because software is structured around data rather than around services of 
a system. abstract data types (ADTs) playa central role in the search for 
an appropriate structure of modularity during the design phase of the 
software life cycle. Intuitively speaking. an ADT is characterized by a set 
of data structures together with a number of services (functions) available 
on these data structures. To deal with ADTs in a rigorous way. we first 
model ADTs by means of algebras. Many algebraic models can be chosen 
as underlying mathematical foundation. In this book. the initial model is 
used. It is one of the most widespread models in literature. Other models 
will be briefly discussed in Section 2.19. As an algebra may define several 
abstract data types (called sorts). the term many-sorted initial algebra is 
used. A description (notation) of an algebra. e.g .. of a many-sorted initial 
algebra. is called an algebraic specification. 

In this chapter a clear distinction is made between abstract elements. i.e. 
elements of many-sorted initial algebras. and concrete notations. i.e. 
elements of alg~braic specifications. For this purpose. cloudlets are used to 
mark abstract elements. Such a distinction may seem to be a bit tedious. 
but from our didactic experience we have learned that it avoids a lot of 
confusion and that without such a distinction many students are not able 
to express themselves clearly during discussion sessions on algebraic 
specifications. 

The main reason why we are so interested in modelling ADTs by 
mathematical objects (in our case many-sorted initial algebras) is that we 
can profit from rigorous reasoning as defined for these objects. Rigorous 
reasoning on algebraic specifications is based on two important techniques 
called equational reasoning and induction. Both techniques enable the 
designer to derive theorems from his algebraic specification. These 
theorems then represent properties of the algebraic specification and of the 
software system described by it. The fact that such a theorem has been 
derived implies that the property it represents has been proved to be true. 

The attentive reader may notice that at this point no mention is made of 
constructivity (see Chapter 4) in algebraic specifications. The reason why 
we do so is that a non-constructive specification is often more natural and 
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is of a higher level of abstraction than a constructive one. Such a non
constructive specification can then be considered as a first step in the 
specification phase. from which a constructive version can be derived in a 
second step. 

Due to the mathematical foundation of the chosen model, namely 
many-sorted initial algebras. designers are able to give well-defined and 
implementation-independent meanings to ADTs. Due to this mathematical 
framework. algebraic specifications can be made accurate and 
unambiguous. To make the reader familiar with accuracy and 
unambiguity aspects of algebraic specifications. clear definitions of 
concepts and an appropriate terminology for these concepts are introduced 
in this chapter. Our intention is not to go into all the details of the 
mathematical machinery. The concepts are described informally and 
illustrated by many examples. No proofs are included in the text. but 
many references to literature are given in a systematic way. where a more 
mathematical treatment on the subject can be found. 

2.1 Many-Sorted Algebra, Signature and 
Graphical Notation 

A many-sorted algebra is an abstract structure consisting of a family of 
sets of objects and a number of functions whose arguments and results 
belong to these sets. 

The structure of stacks of natural numbers is a simple example: the 
structure consists of the set of stacks. the set of natural numbers. the set 
of boo leans. and the functions push. pop. top. isnewstack and succ. 

In order to enable communication. a suitable notation for an algebra is 
required. Such a notation is called a signature. A signature introduces 
names for the sets of objects of the algebra. These names are called the 
sorts or types of the corresponding objects. Objects and functions of the 
algebra too can be given a name by the signature. Such named objects and 
named functions are respectively called nullary and twnnullary operations. 

As an example. Fig. 2/1 shows a signature denoting the many-sorted 
algebra of stacks of natural numbers. A stack is a storage device where 
items are stored by the operation push. We only have direct access to the 
topmost (i.e. last stored) item. by means of the operation top. Access to 
lower items is only possible by first removing from the top one by one all 
items above the item to be accessed. Removing the item on top of the stack 
is done by the operation pop. This access mode is expressed by the 
principle last in - first out. which means that items stored last must be 



www.manaraa.com

16 Abstract Data Types as Initial Algebras Chap. 2 

removed first. This access mode is very common in computer science. It is 
used. e.g .. in the evaluation of expressions. 

sorts Stack; Nat; Bool; 
operations 

true. false: - > Bool; 
zero: -> Nat; 
succ: Nat -> Nat; 
news tack: - > Stack; 
push: Stack· Nat -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack - > Nat; 

Fig. 211 

The sort names of the sets of objects follow the keyword sorts in the 
signature: their order is irrelevant. After the keyword operations follow 
the syntactic definitions of the operations in an arbitrary order. The 
syntactic definition of a nullary operation consists of its operation name 
and its rank. i.e. the sort of the nullary operation. The syntactic definition 
of a nonnullary operation consists of its operation name together with its 
rank. i.e. the sort names of its domain and range. Remember that nullary 
operations denote objects. whereas nonnullary operations denote functions 
in the many-sorted algebra. 

In the example of Fig. 2/1 the sets of objects are called Stack. Nat and 
Bool. The names true and false denote objects of the set Bool. zero denotes 
an object of the set Nat and succ denotes a function with rank Nat -> Nat. 
meaning that the denoted function has a natural number as argument and 
yields a natural number as result. Furthermore. newstack denotes an 
object of the set Stack. push is a function with rank Stack * Nat -> Stack 
and isnewstack is a function with rank Stack -> Bool. Finally. the 
domain and range of pop are Stack. So is the domain of top. but its range 
is the set of natural numbers. 

The relationship between signature and algebra can be illustrated by 
means of a diagram. As an example. the signature of Fig. 2/1 denotes the 
algebra of stacks of natural numbers as shown in Fig. 212. This 
relationship is indicated by the derwtation function 8. 
The left part of the diagram consists of names within the signature. 
whereas the right part contains an algebra. whose elements (objects and 
functions) form the abstract world. An abstract element is represented by 
a cloudlet containing a name (or names) that is one possible representation 
of the element. e.g .• ~. Cloudlets are used to indicate that we deal 
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8 
Nat 

8 
zero 

8 
succ 

top 

push 

8 
pop 

newstack 8 ·newstack· = 

8 
Stack 

8 
isnewstack 

8 
true 

8 
Bo01 

false 
8 

Fig. 212 

with abstract elements. which strictly speaking cannot be represented. The 
sets of objects are represented by ovals. One(or more)-tailed arrows 
represent functions. 

Notice that. in Fig. 212. we have given only one of the many possible 
definitions of the denotation function to map the given signature on the 
algebra of stacks of natural numbers. It would be equally possible for true 
to denote~. Furthermore. it would be equally possible to map the 
same signat~on the algebra of queues of natural numbers or lists of 
natural numbers. 
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There is no one-to-one correspondence between signatures and algebras. 
Clearly. many signatures can denote one same algebra and one signature 
can denote many algebras. As an example. consider the simple signature of 
Fig. 2/3 that denotes the algebra consisting of the set of natural numbers 
and the successor function. see Fig. 2/4. 

sort Nat; 
operations 

zero: -> Nat; 
succ: Nat -> Nat; 

Fig. 213 

Nat 

succ 

zero 

Fig. 214 

This algebra can also be denoted by the signature of Fig. 2/5. as 
illustrated by the diagram of Fig. 2/6. 

sort N; 
operations 

start: -> N; 
next:N -> N; 

Fig.2IS 
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N 

next 

8 
start 

Fig. 216 

The signature of Fig. 2/5 can also denote the algebra consisting of a 
singleton and the identity function. see Fig. 217. 

8 
N 

next 

8 
start 

Fig. 217 

The signature of Fig. 2/5 can also denote the algebra consisting of the 
set of integers and the successor function. see Fig. 218. 

Because each signature can denote many different algebras in many 
different ways. we will develop a mathematical framework that enables us 
to associate a unique algebra with each signature: in fact it will only be 
unique up to an isomorphism. 
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N 

next -

start 

Fig. 218 

2.2 Homomorphism and Isomorphism 

Consider two algebras A and B denoted by the same signature that has Sl, 
Sz, ... and Sm as sorts. A lwmomorphism from A to B with respect to the 
given signature is a family of mappings { fl' f2' ... , fm } in which fj is a 
mapping from the set ~ A.Sj of objects of sort Sj in algebra A onto the set 
~B.Sj of objects of sort Sj in algebra B, so that the behaviour of the 
operations is preserved, or more formally 

1. for each nullary operation name Si' with Si declared as Si: -> Sij in 
the signature: 

2. and for each nonnullary operation name Si' with Si declared as Si: Sil * 
Si2 * .:. * Sik -> Sij in the signature, and for all objects fii) , GiJ, ... 
and t:iV that respectively belong to the sets ~ A·Sil' ~ A·Si2' ... and 

~A·Sik: 

fij( (~A·Si) ((0, @' ... ,@)) = 

(~B·Si ) ( fil (@), f i2 ( (£l), ... , fik (CiJ) ) 

An isomorphism is a bijective homomorphism (i.e. a homomorphism so 
that each fj is bijective). 
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As an example consider the signature of Fig. 2/3 and two algebras NAT 
and MOD2. NAT consists of the set of natural numbers and the successor 
function, see Fig. 214. MOD2 consists of the set of numbers modulo 2 and 
the addition-modulo-2 function denoted by addz, see Fig. 2/9. 

8 
Nat 

succ 

zero 

Fig. 219 

Consider the following mapping f from NAT onto MOD2: 

f: n:g). CD. 0 .... } -> {®. ill} with fC l£J) = ® 
andfCS)=W 

{f} is an homomorphism, see Fig. 2/10, because 

• fC 8NAT·zero ) = fC @ ) = @ = 8MOD2·zero 

• fC C 8NAT·succ ) C ® ) ) = fC ~) = ti) = 

@C (2)) = C 8M0D2'succ) C f C@)) 

• fC C 8NAT·succ ) C S) ) = fC (§)) = ® = 

@C@)=C8M0D2·succ)CfCS)) 

Notice that no homomorphism exists from MOD2 to NAT. 
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IlNAT 

Nat 

8NAT 

succ 

IlNAT 

zero 

IlMOD2 

Nat 

IlMOD2 

succ 

IlMOD2 

zero 

Fig. 2110 

We will now give an example of an isomorphism. Consider the 
signature of Fig. 213, denoting the algebra that consists of the set of Arabic 
numerals and the successor function. The set of binary numerals and the 
binary successor function form another algebra denoted by the same 
signature. A unique isomorphism between these two algebras exists, see 
Fig. 2111. 



www.manaraa.com

Sec. 2.2 Homomorphism and Isomorphism 23 

8 ARAB1C 

Nat 

8 ARAB1C 

succ 

8 ARAB1C 

zero 

8BINAltY 

Nat 

8BINAltY -succ 

8BINAltY 

zero 

Fig. 2111 

2.3 Variable-Free Termlanguage 

Consider a signature with sort names Sl. S2 .... and Sm. and with a number 
of operation names. each with a given rank. This signature defines a 
language. called variable-free termlanguage, in the following recursive way: 

• Each nullary operation name Si. with Si declared as Si: -> Sij in the 

signature. belongs to the language. Its sort is Sij' 

• For each nonnullary operation name Si. with Si declared as Si: Sil * Si2 * 

... * Sik -> Sij in the signature. we have that if t1' t2' ... and tk belong to 
the language and their sorts are respectively Sil' Si2' ... and Sik' then 
siCh. t2' .... tk) is also an element of the language. Its sort is Sir 
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• Every element of the language must be constructed in a finite number 
of steps using the previous two rules. 

The elements of a variable-free termlanguage are called variahle-free 
terms or constant terms. The variable-free termlanguage defined by the 
signature of Fig. 2/1. contains: 

zero 
succ( zero) 
tope push( push( newstack. succ( zero) ). zero) ) 
isnewstack( pope push( newstack. zero ) ) ) 
newstack 
push( newstack. zero ) 
pope push( newstack. succ( succ( zero ) ) ) ) 

The first three variable-free terms are of sort Nat. the fourth has Bool. and 
the others have Stack as sort. 

There is the following relationship between the variable-free 
term language of a signature and an algebra denoted by the signature: 

• Each nullary operation name Si denotes an object. If the sort of Si is Sij' 
the corresponding object belongs to the set 8.Sij" As an example. 

newstack denotes ~. which belongs to the set 8.Stack. 

• Each variable-free term Si(t!. tz . .... tk) denotes the result of applying 
the function 8.si to the objects 8.t!. 8.tz . ... and 8.tk. If the sort of Si(tl. 
tz . .... tk) is Sij' the denoted object belongs to the set 8.Si . As an 

example. push(newstack. zero) denotes C~. which 
belongs to the set 8.Stack. 

Variable-free terms may be added to the left parts of the diagrams. 

2.4 Word Algebra 

A particularly interesting algebra denoted by a signature is its word 
algebra. A word algebra is an algebra in which the objects of the set 8.Sj 

are the variable-free or constant terms of sort Sj. considered as character 
strings. and in which the functions are string combinators that build larger 
strings from smaller ones; furthermore every variable-free term denotes 
the object derived from itself. Given the signature of Fig. 211. its word 
algebra is shown in Fig. 2/12. 
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8 
Nat 

8 
zero 

8 
succ 

succ( zero) 8 

8 
top 

8 
push 

pop( push( newstack. zero) ) 8 

8 
pop 

newstack ----!. 
8 

Stack 

isnewstack 

8 
true 

isnewstack( newstack ) 
8 

8 
Boo1 

false 
8 

Fig. 2112 

Notice that a variable-free termlanguage. although it has been derived 
from a signature. which is a syntactic notation. defines an algebra that 
belongs to the abstract world. 

We could write the variable-free terms in postfix ~otation or represent 
them by trees instead of strings. All these word algebras are isomorphic. 
When we refer to the word algebra. we actually mean any of these 
isomorphic algebras. 
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2.5 Signature, Variety and Termalgebra 

The variety over a signature is the set of all possible algebras denoted by 
that given signature. 

An algebra denoted by a signature is a termalgebra of the signature if 
each object of the algebra can be denoted by a variable-free term. An 
example of a termalgebra of the signature of Fig. 2/1 is its word algebra. 
which is shown in Fig. 2/12. 

Let us now use the signature of Fig. 213 to denote the algebra of the 
integers. as shown in Fig. 2113. 

Nat 

0 
suee .. 

0 
zero 

0 
suee( zero) 

0 
succ( succ( zero ) ) 

Fig. 2113 

Notice that the negative integers cannot be denoted by a variable-free 
term of the signature. Therefore. the denoted algebra is not a termalgebra 
of the given signature. 

2.6 Signature and Initial Algebra 

A category of algebras over a signature is a set of algebras denoted by the 
signature. together with a number of homomorphisms between these 
algebras including the identity homomorphisms. 

An algebra I is initial in a category C of algebras over a signature. if and 
only if I belongs to C and for each algebra A in C. a unique homomorphism 
in C from I to A does exist. It can easily be shown that if I and r are both 
initial algebras in the same category. they are isomorphic [Goguen78. 
Ehrig8SJ. When we refer to the initial algebra. we actually mean any of 
these isomorphic algebras. 
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Convention: whenever we use the term category over a signature 
without specifying which category is meant. we mean the variety over the 
signature together with all possible homomorphisms. 

The initial algebra of the category over a signature always exists 
[Goguen78. Meseguer85a. Ehrig85]. Indeed. the word algebra of a signature 
is the initial algebra of its category. 

2.7 Abstract Data Types Defined by a Signature 

The abstract data types defined by a signature are the sets of objects 8.Sj 
together with the functions 8.si defined on these sets. of the initial algebra 
of the category over the signature. The data types are called abstract 
because they are defined up to an isomorphism. Because of the 
mathematical notion of algebras. abstraction is made from data 
representations and only fundamental properties of objects and functions 
are considered. Concrete representations and implementations of objects 
and functions are irrelevant at this level of specification. 

Until now. we have developed a mathematical framework in which 
each variable-free term denotes a different object of the abstract data 
types. This framework. as explained so far. is not powerful enough for 
most abstract data types currently used in software systems. Therefore. 
we will introduce the notion of axiom so that different variable-free terms 
can denote the same object. 

2.8 Termlanguage 

Consider the signature consisting of the sort names Sl. S2 .... and Sm. and a 
number of operation names each with a given rank. Furthermore. for each 
sort Sj a set of unique names { xh' xi2' .... Xjn }. called variables of sort Sj. is 
given. The termlanguage of the signature with respect to the sets of 
variables is defined in the following recursive way: 

• Each variable Xjh of sort Sj belongs to the language. 

• Each nullary operation name Si. with Si declared as Si: -> Sij in the 
signature. belongs to the language. Its sort is Sij' 

• For each nonnullary operation name Si. with Si declared as Si: Sil * Si2 * 
... * Sik -> Sij in the signature. if tl' t2' ... and tk belong to the language 
and their sorts are respectively Silo Si2' '" and Sik' then SiC tl. t2' .... tk ) 
is also an element of the language. Its sort is Sir 
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• Every element of the language must be constructed in a finite number 
of steps using the previous three rules. 

The elements of a termlanguage are called terms. The termlanguage 
defined by the signature of Fig. 2/1, with respect to the set of variables 
{nd of sort Nat, the set of variables { stackl , stackz } of sort Stack and the 
empty set of variables of sort Bool contains the following terms: 

zero 
succ( succ( n 1 ) ) 

tope push( stackl , nl ) ) 
push( pope stackl ), zero) 
pope push( stackl , tope push( stackz, nl ) ) ) ) 
isnewstack( push( stackz, nl ) ) 

The first three terms are of sort Nat, the next two have Stack and the last 
term has Bool as sort. 

2.9 Substitution and Ground Substitution 

Assume that a signature together with sets of variables are given. A 
substitution CT is a family of mappings { CTl, CTz, ... , CT m } in which CTj is a 
mapping from the set of variables of sort Sj onto the set of terms of sort Sj. 
A ground substitution is a substitution in which each variable is mapped 
onto a variable-free term. 

Given a signature, sets of variables and a corresponding substitution, 
application of the substitution to an arbitrary term results in a new term 
obtained by simultaneously replacing all the variables by the terms as 
specified by the substitution. 

Consider the signature of Fig. 2/1, the sets of variables of sort Nat, 
Stack and BooL respectively { nl }, { stackl } and { }, and consider the 
substitution { { (nl, zero) }, { ( stackl , push( newstack, nl ) ) }, { } }. By 
applying the substitution, the term tope stackl ) is transformed into the 
term tope push( newstack, nl ) ), and the term pope push( stackl , nl ) ) is 
transformed into the term pope push( push( newstack, nl ), zero) ). 
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2.10 Assignment 

Given a signature denoting an algebra and given a set of variables for each 
sort Sj. An assignment is a family (set) of mappings { 91 , 92, .... 9m } in 
which 9j is a mapping from the set of variables of sort Sj onto the set 8.Sj. 
An assignment for the signature of Fig. 2/1 denoting the algebra of stacks 
of natural numbers as shown in Fig. 2/2. and for { nl }. { stack1 } and { } 
as sets of variables of orts Nat. Stack and Bool. may be { { ( nl. 
~) }. { (stack1 •• ush( newstack. zero )' )}. { } }. 
~ assignment may be interprete as an extension of the denotation 
function for variables. As a result. the denotation function is then defined 
over terms. Given a signature denoting an algebra and given a set of 
variables for each sort Sj together with an assignment. terms denote objects 
in the following way. see Fig. 2/14: 

• Each nullary operation name Sj of sort Sjj denotes the object 8.sj of 8.Sjj • 
e.g., newstack denotes ~ in 8.Stack. 

• Each variable of sort Sj denotes the object of 8.Sj as specified by the 
assignment. e.g .. nl denotes G:e~oJ of 8.Nat. 

• Each term Sj(h. t2' .... tk) of sort Sjj denotes the result of applying the 
function 8.sj on the objects 8.tl' 8.t2' ... and 8.tk' The result belon s to 
8.Sij • e.g .. push( newstack. nl ) denotes ~ewstack. zero)' of 
8.Stack. 

Every ground substitution implicitly defines an assignment. The 
ground substitution 

{ { ( nl. zero) }. { ( stack1 • push( newstack, zero) ) }, { } } 

implicitly defines the assignment given above. 
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8 
succ 

B 
nl 

8 
top 

push( newstack. nl ) 

8 
push 

staCkl 
B 

8 
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true 

8 
Bo01 

false 
B 

Fig. 2/14 

2.11 Axioms and Presentation 
A presentation is a signature extended by means of axioms. An axiom 
consists of a number of sets of variables (at most one set of variables for 
each sort of the signature) and two terms of the same sort belonging to the 
termlanguage of the signature with respect to the sets of variables. In most 
presentations all axioms have the same sets of variables because the 
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variables need not occur in the constituent terms of every axiom. An 
example of a presentation is given in Fig. 2115. 

sorts Stack; Nat; Bool; 
operations 

true, false: - > Bool; 
zero: -> Nat; 
succ: Nat -> Nat; 
news tack: - > Stack; 
push: Stack· Nat -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s: Stack; n: Nat; 
axioms 

isnewstack( news tack ) = true; 
isnewstack( push( s, n ) ) == false; 
pope newstack ) == news tack; 
pope push( s, n) ) == s; 
tope news tack ) == zero; 
tope push( s, n) ) == n; 

Fig. 2/15 

-- 1 --
-- 2--
-- 3--
-- 4--
-- 5 --
-- 6--

In Fig. 2/15 the variables are common to all axioms. After the 
keyword declare the variables are listed with their sort. The axioms 
follow the keyword axioms. Neither the order of the variables nor the 
order of the axioms is relevant. If the axioms have distinct sets of 
variables. a declaration part must be given for each axiom. In order to 
avoid confusion, a variable that is declared in several declaration parts. 
will always be declared of the same sort. 

It is obvious that error treatment is a very important issue from a 
software engineering viewpoint. A thorough treatment of error detection 
and error handling will be given in Chapter 7. Meanwhile the exceptional 
situations are treated in a naive way. In our Stack example. the top of an 
empty stack yields zero and the pop of an empty stack gives the empty 
stack back. 

An algebra is denoted by a presentation if it is denoted by the signature 
of the presentation. An algebra denoted by a presentation satisfies the 
axioms of its presentation if for each axiom the two constituent terms 
denote the same object of the algebra for each possible assignment. 
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2.12 Presentation, Variety and Termalgebra 

The variety over a given presentation is the set of all possible algebras 
denoted by the presentation and satisfying the axioms of the presentation. 
An example of an algebra belonging to the variety over the presentation of 
Fig. 2115 was given in Fig. 212. 

A termalgebra of a presentation is an algebra denoted by the 
presentation in which each object can be denoted by a variable-free term of 
the presentation. 

2.13 Equational Reasoning 

Equational reasoning is one of the techniques that enable the software 
designer to use so-called rigorous mathematical reasoning (another 
technique is induction. see Section 2.17). Properties of the specification of 
software can be proved to be true. even before the implementation has been 
started. Such proofs of properties are very similar to proofs of theorems in 
mathematics. Proofs about specifications of programs serve two purposes. 
They constitute the program documentation by excellence and they 
enhance software correctness and reliability. 

Given a presentation. equational reasoning is the process of deriving new 
axioms by applying the following rules [Goguen81, Meseguer85a. 
Meseguer85b]: 

• Reflexivity: if t is a term of the presentation. 

declare <declaration part> 
axiom 

t == t; 

is derivable by reflexivity if the variables used in the term t are listed 
in the declaration part. 

• Symmetry: if the axiom 

declare < declaration part> 
axiom 

tl = t2; 

is given or derivable. then 
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declare <declaration part> 
axiom 

tz = tl: 

is derivable. 

• Transitivity: if the axioms 

declare <declaration part> 
axioms 

tl == tz: 
tz == t3: 

are given or derivable. then 

declare <declaration part> 
axiom 

tl = t3: 

is derivable. 

• Substitutivity: if the axioms 

declare x: Sj: <declaration part 1 > 
axiom 

tl = tz: 
declare <declaration part 2> 
axiom 

t3 = t4: 

Equational Reasoning 33 

are given or derivable. with t3 and t4 being of sort Sj. then 

declare <declaration part 1> <declaration part 2> 
axiom 

ts = 't(,: 

is derivable. with ts being the result of applying the substitution 
{ { ( X. t3 ) } } to tl and with t6 being the result of applying the 
substitution { { ( X. t4 ) } } to tz. 

• Abstraction: if the axiom 

declare <declaration part> 
axiom 

tl = tz: 
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is given or derivable. x is a variable of sort Sj and x is not declared in 
the declaration part. then 

declare x: Sj: <declaration part> 
axiom 

tl == t2: 

is derivable . 

• Concretion: if the axiom 

declare x: Sj: <declaration part> 
axiom 

tl == t2: 

is given or derivable. the set of variable-free terms of sort Sj is not 
empty and x does not appear in tl nor t2' then 

declare <declaration part> 
axiom 

tl == t2: 

is derivable. 

Given a presentation. deriving new axioms by equational reasoning 
always yields axioms that are satisfied by all algebras of the variety over 
the presentation [Meseguer85a. Ehrig85]. A second important property is 
that every axiom satisfied by all algebras of the variety over the 
presentation can be deduced using these rules [Meseguer85a. Ehrig85]. 

Example of the Stacks 

A derivable axiom is 

declare s: Stack: n: Nat: 
axiom 

push( s. n ) == push( s. tope push( s. n ) ) ): 

To prove this. we first apply reflexivity obtaining 

declare s: Stack: n: Nat: 
axiom 

push( s. n ) == push( s. n ): 

-- o· --

-- 1" --
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The symmetry property transforms axiom 6 of Fig. 2/15 into 

declare s: Stack; n: Nat; 
axiom 

n == tope push( s. n ) ); -- 2' --

Substitutivity for the variable n of axiom l' by axiom 2' yields axiom 0'. 
Notice that the axioms of the presentation define a family of equality 

relations between the variable-free terms. Each equality relation defines 
the equality between the variable-free or constant terms of a given sort: 
two variable-free terms are equal if and only if they can be the constituent 
terms of an axiom with empty sets of variables derived by equational 
reasoning. These equality relations are equivalence relations. i.e. relations 
that are reflexive. symmetric and transitive. E.g .. the equality relation for 
sort Stack defined by the axioms of Fig. 2/15 implies that the following 
variable-free terms are equal: 

newstack 
pope newstack ) 
pope push( newstack. zero) ) 
pope push( newstack. tope newstack ) ) ) 
pope pope push( push( newstack. succ( zero) ). zero) ) ) 

The equality relations defined by the axioms of a presentation are even 
congruence relations: if Si has been declared as Si: Sil * Si2 * ... * Sik -> Sij in 
the presentation and if tl = Ul. t2 = U2 .... and tk == Uk with tl and Ul. 
t2 and U2 .... and tk and Uk variable-free terms of sorts Silo Si2' ... and Sik 
respectively. then SiC tl' t2' .... tk) == SiC Ul. U2 ..... Uk)' 

2.14 Presentation and Initial Algebra 

A category of algebras over a given presentation is a set of algebras denoted 
by the presentation. together with a number of homomorphisms between 
these algebras including the identity homomorphisms. A frequently used 
category is the variety over a presentation. together with all possible 
homomorphisms between the algebras of this variety. 

An algebra I is initial in a category C of algebras over a presentation. if 
and only if I belongs to C and for each algebra A in C. a unique 
homomorphism from I to A does exist. If the initial algebra exists. it is 
uniquely determined up to an isomorphism [Goguen78. Ehrig85]. 
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Convention: whenever we use the term category over a presentation 
without specifying which category is meant, we mean the variety over the 
presentation together with all possible homomorphisms. 

How can the initial algebra of the category over a presentation be 
found? Consider the word algebra of the signature of a given presentation 
(the word algebra of the presentation for short) together with the equality 
relations defined by its axioms (see previous section). The equality 
relations are congruence relations that partition each set 8.Sj (of variable
free terms of sort Sj) into a number of congruence classes of sort Sj. The 
classes of sort Sj are the objects of the set 8.Sj in a new algebra, called 
quotient algebra of the presentation. Each function of the given word 
algebra corresponds to a function in the quotient algebra. If the function 
8.si, with Si declared as Si: Sit * Si2 * ... * Sik -> Sij in the presentation, maps 
the arguments 8.tl' 8.t2, ... and 8.tk to 8.si( tl, t2, ... , tk ) in the word 
algebra with tl, t2, ... and tk being variable-free terms of sorts Sit, Si2' ... 
and Sik respectively, then the corresponding function maps the arguments 
Cl , C2, ... and Ck to C with C l , C2, ... , Ck and C being the congruence 
classes to which 8.tl' 8.t2' ... , 8.tk and 8.si( tl, t2, ... , tk ) respectively 
belong. 

The initial algebra of the category over a presentation is the quotient 
algebra of the word algebra of the presentation for the equality relations 
defined by the axioms [Goguen78, Ehrig85]. 

We will illustrate this algorithm by the example of Fig. 2/15. The 
word algebra was shown in Fig. 2112. This word algebra does not belong 
to the variety over the given presentation (Fig. 2115) because none of the 
axioms is satisfied. The equality relations defined by the axioms divide 
the sets of objects into classes as shown in Fig. 2/16. 
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Fig. 2116 
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Q ... 
~ 

If the classes of sort Sj are considered as the objects of the set S.Sj upon 
which corresponding functions are defined. we obtain the quotient algebra 
of the word algebra for the equality relations defined by the axioms. see 
Fig. 2/2. This quotient algebra belongs to the variety over the 
presentation. because it satisfies the axioms. It can be proved that it is the 
initial algebra of the variety [Goguen78. Ehrig8S1. 
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2.15 Abstract Data Types Defined by a 
Presentation 

The abstract data types defined by a presentation are the sets of objects 8.Sj 

together with the functions 8.si defined on these sets. of the initial algebra 
of the category over the presentation. The data types are called abstract 
because they are defined up to an isomorphism. Because of the 
mathematical notion of algebras. abstraction is made from data 
representations and only fundamental properties of objects and functions 
are taken into account. If we consider. e.g .. the abstract data type of the 
stacks of natural numbers as defined by the presentation of Fig. 2/15. it is 
irrelevant whether the stacks are represented by lists. arrays or anything 
else. neither is it relevant which algorithm is used to calculate the 
functions. 

2.16 Examples 

The Abstract Data Type Orientation 

Fig. 2/17 shows two presentations defining the same abstract data type 
Orientation. The abstract data type consists of the set 8.0rientation 
together with the functions 8.turnleft. 8.turnright and 8.opposite. The set 
8.0rientation contains four objects. i.e. 8.north. 8.east. 8.south and 8.west. 

sort Orientation; 
operations 

north. east. south. west: -> Orientation; 
turnleft. turnright. opposite: Orientation -> Orientation; 

declare or: Orientation; 
axiODllii 

turnleft( north) = west; 
turnleft( south) == east; 
turnright( turnleft( or ) ) == or; 
turnleft( turnleft( or ) ) == opposite( or ); 

sort Orientation; 
operations 

north. east. south. west: -> Orientation; 
turnleft. turnright. opposite: Orientation -> Orientation; 

turnleft( east) == north; 
turnleft( west) == south; 
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axioms 
turnleft( north) == west; 
turnleft( south) == east; 
turnright( north) = east; 
turnright( south) == west; 
opposite( north) == south; 
opposite( south) == north; 

Fig. 2/17 
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turnleft( east) = north; 
turnleft( west) == south; 
turnright( east) == south; 
turnright( west) == north; 
opposite( east) == west; 
opposite( west) == east; 

Each of the axioms of one presentation is derivable from the axioms of 
the other one using equational reasoning and induction (see Section 2.17). 
Notice that the first presentation is shorter but the second one is more 
constructive, i.e. it is easier to derive an implementation (program) from it. 
Constructivity will be treated in Chapter 4. 

Unbounded Arrays of Boolean Values 

In Fig. 2/18 a presentation is given defining the abstract data types of the 
boolean values, the natural numbers and the unbounded arrays of boolean 
values with natural numbers as indices. 

sorts Array; Nat; Bool; 
operations 

true, false: -> Bool; 
ifthenelse: Bool * Bool * Bool-> Bool; 

zero: -> Nat; 
suee: Nat -> Nat; 
equal: Nat * Nat -> Bool; 

empty: -> Array; 
assign: Array * Bool * Nat -> Array; 
read: Array * Nat -> Bool; . 

declare 
b, b1, b2: Bool; n, nl> n2: Nat; ar: Array; 

axioms 
ifthenelse( true, b1, b2 ) == b1; 

ifthenelse( false, bl> b2 ) == b2; 

equal( suee( nl ), suecC n2 ) ) == equal( nl, n2 ); 
equal( zero, suecC n ) ) == false; 
equal( suecC n ), zero) = false; 
equal( zero, zero) = true; 

read( empty, n) == true; 
read( assign( ar, b, nl ), n2 ) == 

ifthenelse( equal( nl> n2 ), b, read( ar, n2 ) ); 

Fig. 2118 
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The abstract data types defined by the above presentation consist of the 
sets 8.Bool. 8.Nat and 8.Array, and the functions 8.ifthenelse, 8.succ, 
8.equal. 8.assign and 8.read. Notice that if the operations had other names, 
e.g., true was called waar and false was called onwaar, we would still have 
the same abstract data types because an abstract data type is defined up to 
an isomorphism. From the axioms defined for the operation read we can 
deduce that a newly created unbounded array is initialized with true. So, 
reading a value on a given index of an unbounded array will always yield 
the value true, if there has never been an assignment of a value on that 
index. In Chapter 3, where we deal with (algebraic specification) language 
aspects, we will introduce language-defined operations for ifthenelse and 
equal. 

The Farmer, the Wolf, the Goat and the Cabbage 

An example coming from the field of artificial intelligence is the problem 
of the farmer, the wolf. the goat and the cabbage crossing a river. A 
farmer, a wolf, a goat and a cabbage want to cross a river but they can 
only dispose of one boat. The farmer can cross the river but he can only 
carry one passenger at most. When the farmer is absent, the wolf may eat 
the goat or the goat may eat the cabbage. So the problem of how to cross 
the river safely arises. 

A specification is given in Fig. 2119. This specification describes a 
solution (the what) without giving an implementation (algorithm) to find 
this solution (the how). 

The wolf, the goat and the cabbage form the objects of sort Thing. The 
farmer and the boat are not explicitly defined in the specification since we 
assume that crossing the river without the boat is impossible and that the 
boat can only move from one bank to the other one if it is navigated by the 
farmer. Sequences of moves are modelled by objects of sort MoveSeq. An 
example of such an object is cross( transport( start, goat)). This object 
can be interpreted as follows: (1) initially all things, the farmer and the 
boat are at one of two banks, say bank A; (2) the farmer crosses the river 
together with the goat (3) finally, the farmer leaves the goat at bank B 
and crosses the river all alone. The situation after the sequence of moves is 
as follows: the farmer, the wolf, the cabbage and the boat are at bank A 
whereas the goat is at bank B. Clearly, there are an infinite number of 
move sequences. Only those move sequences for which the operation 
issolution yields true, are a solution of the given problem. The operation 
issolution is defined in terms of the operations samebank, otherbank, over, 
allover, possible, dangerous, unsafe and safe. 

Notice that comments are inserted in the specification. A comment 
starts with two adjacent hyphens and extends to the end of the line or two 
adjacent hyphens, whatever comes first. 
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sorts MoveSeq; Thing; Bool; 
operations 

true, false: - > Bool; 
not: Bool -> Bool; 
and, or: Bool * Bool - > Bool; 
if: Bool * Bool * Bool-> Bool; 

wolf, goat, cabbage: -> Thing; 
eq: Thing • Thing -> Bool; 

-- equality function for things 

start: -> MoveSeq; 

Examples 41 

-- the farmer, the wolf, the goat, the cabbage and the boat are at the same bank; 
-- which of the two banks is irrelevant 

cross: MoveSeq - > MoveSeq; 
-- the farmer crosses the river alone 

transport: MoveSeq * Thing -> MoveSeq; 
-- the farmer transports either the wolf, the goat or the cabbage 

samebank: MoveSeq * Thing -> Bool; 
-- samebank indicates whether, after executing a sequence of movements, 
-- a Thing is at the same bank of the river as the farmer 

other bank: MoveSeq * Thing - > Bool; 
-- the negation of samebank 

over: MoveSeq -> Bool; 
-- indicates whether the farmer, after the execution of a sequence of movements, 
-- is at the bank he wants to arrive at 

allover: MoveSeq -> Bool; 
-- indicates whether, after the execution of a sequence of movements, the farmer, the 
-- wolf, the goat and the cabbage arrive at the bank the farmer wants them to be at 

possible: MoveSeq -> Bool; 
-- indicates whether a sequence of movements is possible; the farmer can 
-- only transport a thing from a bank if that thing is present at that bank 

dangerous: MoveSeq -> Bool; 
-- indicates whether the wolf may eat the goat or the goat may eat the 
-- cabbage after the execution of a sequence of movements 

unsafe: MoveSeq -> Bool; 
-- indicates whether the wolf may have eaten the goat or the goat may have eaten 
-- the cabbage during or after the execution of a sequence of movements 

safe: MoveSeq -> Bool; 
-- the negation of unsafe 

issolution: MoveSeq -> Bool; 
-- indicates whether a sequence of movements is a solution of the given problem 

declare b, bi> b2: Bool; 
th, thl' th2: Thing; 
ms: MoveSeq; 

axioms 
note true) == false; note false) == true; 
and( true, b ) == b; and( false, b ) == false; 
ore true, b ) == true; ore false, b ) = b; 
if( true, bi> b2 ) == bl ; if( false, bl , b2 ) == b2; 

eq( wolf, goat) == false; eq( goat, cabbage) == false; 
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eq( wolf, cabbage) = false; eq( thl> th2 ) == eq( th2, th1 ); 

eq( th, th ) = true; 

samebank( start, th ) = true; 
samebank( cross( ms ), th) = note samebank( ms, th ) ); 
samebank( transport( ms, th1 ), th2 ) = 

if( eq( thl' th2 ), 
-- then -- true, 
-- else -- note samebank( ms, th2 ) ) ); 

otherbank( ms, th ) = note samebank( ms, th) ); 
over( start) == false; 
over( cross( ms ) ) = note over( ms ) ); 
over( transport( ms, th ) ) = note over( ms ) ); 
allover( ms ) == and( and( and( 

over( ms), 
samebank( ms, wolf) ), 
samebank( ms, goat) ), 
samebank( ms, cabbage) ); 

possible( start) = true; 
possible( cross( ms ) ) == possible( ms ); 
possible( transport( ms, th ) ) = and( 

samebank( ms, th ), 
possible( ms ) ); 

dangerous( ms ) = ore 
and( 

otherbank( ms, wolf ), 
otherbank( ms, goat) ), 

and( 
otherbank( ms, goat ), 
otherbank( ms, cabbage) ) ); 

unsafe( start) = dangerous( start ); 
unsafe( cross( ms ) ) == or( 

dangerous( cross( ms ) ), 
unsafe( ms ) ); 

unsafe( transport( ms, th) ) == ore 
dangerous( transport( ms, th ) ), 
unsafe( ms ) ); 

safe( ms ) = not( unsafe( ms ) ); 
issolution( ms ) = and( and( 

possible( ms ), 
safe( ms)), 
allover( ms ) ); 

Fig. 2119 

Chap. 2 

Notice that both the operations and the axioms parts have been divided 
into three subparts. There is one subpart for each sort. This kind of 
modularity, which is still implicit, will be made explicit later when we 
deal with algebraic specification language aspects in Chapter 3. 
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2.1 7 Induction 

Like equational reasoning, induction is a mathematical technique that can 
be used to derive new axioms from a given presentation. Axioms derivable 
by equational reasoning are satisfied by every algebra of the variety over 
the presentation. Axioms derivable by induction will be satisfied by every 
termalgebra of the variety over the given presentation, and consequently 
by the initial algebra too. As equational reasoning, induction is a very 
important technique to prove theorems of abstract data types. 

A mathematical (but rather tedious) definition of induction can be 
found in [Boyer79]. The main idea behind induction is that one assumes 
instances of the property being proved during its own proof. One of the 
hardest problems in discovering an inductive proof is finding an 
appropriate induction scheme that is complete and sound. 

Example of the Integers 

sort Z; 
operations 

zero: -> Z; 
suee: Z -> Z; 
pre: Z -> Z; 
add:Z·Z-> Z; 

declare i, j: Z; 
axioms 

pre( suec( i ) ) = i; 
suee( pre( i ) ) = i; 
add( zero, i) = i; 
add( suec( i ), j ) = suec( add( i, j ) ); 
add( pre( i ), j ) = pre( add( i, j ) ); 

Fig. 2120 

-- 1 --
-- 2--
-- 3--
-- 4--
-- 5--

The presentation of Fig. 2/20 defines the abstract data type of the 
integers including the successor, predecessor and addition functions. An 
axiom derivable by induction is the commutativity of the addition: 
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declare i. j: Z; 
axiom 

add( j. i ) == add( i. j ); 

Chap. 2 

-- 0' --

It is provable by induction over j as well as over i. We will demonstrate it 
by induction over j. For each termalgebra of the presentation. each object 
can be denoted by a variable-free term consisting of the operation names 
zero. succ and pre only. This will be proved by induction. further on. 

To prove axiom 0'. we have to prove the induction base 

declare i: Z; 
axiom 

add( zero. i ) == add( i. zero ); 

and given the induction hypothesis 

declare i. j': Z; 
axiom 

add( f. i ) == add( i. f ); 

we have to prove the induction conclusions 

declare i. f: Z; 
axioms 

add( succ( f ). i ) == add( i. succ( f ) ); 
add( pre( f ). i ) == add( i. pre( r ) ); 

-- l' --

-- 2' --

-- 3' --
-- 4' --

If axiom 0' is written in the form F( j. i ). we can use the following 
induction scheme: 

F( r. i) => 
F( r. i ) => 

F( zero. i) 
F( succ( r ). i ) 
F( pre( r ). i ) 

Using axiom 3 of Fig, 2120. we can rewrite axiom l' as: 

declare i: Z; 
axiom 

i == add( i. zero ); -- 1.0' --

This axiom can be proved by induction over i. As already mentioned. for 
each termalgebra each object can be denoted by a variable-free term 
consisting of the operation names zero. succ and pre only. 
We have to prove the induction base 
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axiom 
zero == add( zero, zero ); 

and given the induction hypothesis 

declare r: z; 
axiom 

r == add( r, zero ); 

we have to prove the induction conclusions 

declare r: z; 
axioms 

succ( r ) == add( succ( r ), zero ); 
pre( r ) == add( pre( r ), zero ); 

-- 1.1' --

-- 1.2' --

-- 1.3' --
-- 1.4' --

If axiom 1.0' is denoted as G( i ), we can use the following induction 
scheme: 

G( r ) => 
G( r ) => 

G( zero) 
G( succ( r ) ) 
G( pre( r ) ) 

Axiom 1.1' can be derived from axiom 3 of Fig. 2/20. 
Using axiom 4 of Fig. 2/20, axiom 1.3' can be transformed into 

declare r: z: 
axiom 

succ( r ) == succ( add( i'. zero) ): 

Using the induction hypothesis 1.2', the right-hand side can be transformed 
into the left-hand side. 
Axiom 1.4' can be transformed using axiom 5 of Fig. 2/20 into 

declare r: z; 
axiom 

pre( r ) == pre( add( i'. zero) ): 

Using the induction hypothesis 1.2', the right-hand side can be transformed 
into the left-hand side. This proves axiom 1'. 
The first induction conclusion: 

declare i, j': Z: 
axiom 

add( succ( j' ), i ) == add( i. succ( j' ) ); 

can be transformed into 

-- 3' --
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declare i, f: Z; 
axiom 

succ( add( f, i ) ) == add( i, succ( f ) ); 

Chap. 2 

by using axiom 4 of Fig. 2/20. Using the induction hypothesis 2', it can be 
transformed into 

declare i, f: Z; 
axiom 

succ( add( i, f ) ) == add( i, succ( f ) ); -- 3.0' --

This axiom can be proved by induction over i. As already mentioned, for 
each termalgebra each object can be denoted by a variable-free term 
consisting of the operation names zero, succ and pre only. 
We have to prove the induction base 

declare f: Z; 
axiom 

. succ( add( zero, f ) ) == add( zero, succ( f ) ); 

and given the induction hypothesis 

declare r. f: Z; 
axiom 

succ( add( r, f ) ) = add( r, succ( f ) ); 
we have to prove the induction conclusions 

declare r. f: Z; 
axioms 

succ( add( succ( r ), f ) ) == add( succ( r ), succ( j' ) ); 
succ( add( pre( r ). f ) ) == add( pre( r ). succ( f ) ); 

-- 3.1' --

-- 3.2' --

-- 3.3' --
-- 3.4' --

If axiom 3.0' is denoted as H( i. f ). we can use the following induction 
scheme: 

H( r. f) => 
H( r. f) => 

H( zero. f) 
H( succ( r ). j' ) 
H( pre( i' ), j' ) 

Using axiom 3 of Fig. 2/20 the left as well as the right-hand side of 3.1' 
can be transformed into 

succ( j' ) 

Axiom 3.3' can be transformed into 
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declare r. f: Z: 
axiom 
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succ( succ( add( r, f ) ) ) = succ( add( r, succ( f ) ) ): 

by using axiom 4 of Fig. 2/20. Using the induction hypothesis 3.2' the 
left-hand side can be transformed into the right-hand side. 
Axiom 3.4' can be transformed into 

declare r, f: Z: 
axiom 

succ( pre( add( r, f ) ) ) = pre( add( i', succ( f ) ) ) : 

by using the last axiom of Fig. 2120. Using the induction hypothesis 3.2', 
it can be transformed into 

declare i', f: Z: 
axiom 

succ( pre( add( r, f ) ) ) = pre( succ( add( i', f ) ) ): 

which can be proved by using axioms 1 and 2 of Fig. 2/20. This deduction 
proves induction conclusion 3'. 
The proof of induction conclusion 4' is completely analogous to that of 3'. 

We still have to prove that for each termalgebra of the given 
presentation, each object can be denoted by a variable-free term consisting 
of the operation names zero, succ and pre only, i.e. the operation names 
zero, succ and pre provide us with a system of canonical forms. We will 
even prove that each object of such an algebra can be denoted by 

1. either the term zero: 

2. or a variable-free term consisting of the operation names zero and 
succ only: if the variable-free term contains n occurrences of the 
operation name succ, it will be written as succn ( zero) with n > 0: 

3. or a variable-free term consisting of the operation names zero and pre 
only: if the variable-free term contains n occurrences of the operation 
name pre, it will be written as pren ( zero) with n > O. 

This property will be written in the form F( x ), where x stands for an 
arbitrary object of the termalgebra. We use the following induction 
scheme: 

F( x') => 
F( x') => 

F( x' ) and F( y' ) => 

F( zero ) -- a --
F( ~cc( x' ) ) -- b --
F( pre( x' ) ) -- c--
F( add( x', y' ) ) -- d --
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Case a is trivial. Cases band c are proved respectively using axioms 2 and 
1 of Fig. 2/20. Before proving case d, we first prove some useful lemmas. 

declare i: Z; 
axiom 

add( succll ( zero ), i ) == succll ( i); -- with n ~ 0 lemma 1 

Lemma 1 can be proved by a simple induction over n. The induction 
base (n = 0) is identical to axiom 3 of Fig. 2/20. If the induction 
hypothesis 

declare i: Z; 
axiom 

add( succll'( zero ), i ) == succll'( i ); 

is true, we still have to prove that 

declare i: Z; 
axiom 

add( succll'+l( zero ), i ) == sUCCll'+l( i ); 

The above axiom can be written as 

declare i: Z; 
axiom 

add( succ( succll'( zero) ), i ) == succ( succll'( i ) ); 

which can be transformed to 

declare i: Z; 
axiom 

succ( add( succll'( zero ), i ) ) == succ( succll'( i ) ); 

using axiom 4 of Fig. 2/20. The above axiom can be proved using the 
induction hypothesis. 

The proof of the following lemma is analogous. 

declare i: Z; 
axiom 

add( prell ( zero ), i ) = prell ( i); -- with n ~ 0 lemma 2 
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Lemma 3 is 

declare i: Z: 
axiom 

succn ( pren ( i ) ) == i: -- with n ~ 0 

The induction base (n = 0) is trivial. If the induction hypothesis 

declare i: Z: 
axiom 

succn' ( pren' ( i ) ) = i: 

is true. we have to prove the induction hypothesis 

declare i: Z: 
axiom 

succn'+1( pren'+1( i ) ) == i: 

which can be written as 

declare i: Z: 
axiom 

succ( succn' ( pren' ( pre( i ) ) ) ) == i: 

lemma 3 

The above axiom can be proved using the induction hypothesis and axiom 2 
of Fig. 2/20. 

The proof of lemma 4 is analogous. 

declare i: Z: 
axiom 

pren ( succn ( i ) ) = i: -- with n ~ 0 

We still have to prove case d. 

II F( x' ) and F( y' ) => F( add( x'. y' )) I -- d --II 

lemma 4 

The induction hypothesis expresses that x' can be written as zero. as 
succn ( zero) or as pren ( zero) with n > O. We consider these three 
situations. 

1. x' can be written as zero. The right-hand side of case d becomes 
F( add( zero. y' ) ) which can be transformed. using axiom 3 of Fig. 
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2/20, to F( y' ) which is part of the induction hypothesis. 

2. x' can be written as succn ( zero) with n > o. Applying lemma 1 
yields as right-hand side of case d F( succn ( y' )). As F( y' ) is valid, 
y' can be written as zero, succffi ( zero) or as preffi ( zero) with m > O. 
If y' can be written as zero or succffi ( zero ), F( succn ( y' ) ) is obvious 
valid. If y' can be written as preffi ( zero ), we have three possibilities: 

n < m: The right-hand side may be written as 

which can be proved using lemma 3. 

n = m: Using lemma 3 we obtain F( zero ), which is valid. 

n > m: The right-hand side may be written as 

which can be proved using lemma 3. 

3. x' can be written as pren ( zero). The proof is analogous to that of the 
previous situation. 

In Chapter 4 constructive specifications will be defined for which a 
system of canonical forms (terms built up of constructors only) is 
designated by the designer of the specification. 

Counter-Example 

The variety over the presentation of Fig. 2/20 contains the following 
algebra [Huet801, see Fig. 2/21. The set of objects of the algebra is the 
union of the set of blue integers (Q and the set of red integers G;) , 
with i standing for an integer. The functions of the algebra are £E), 
t§ and 8 Their meaning is intuitively described as follows 

fE)(G;J)=~ 

@) (Q;~}) = Q@ 
8((£~))=~ 
~((9)=aE0;) 



www.manaraa.com

Sec. 2.17 Induction 51 

The nullary operation zero denotes ~ . 

Z 
8 

succ 

8 
pre 

8 
add 

8 
zero 

8 
pre( zero ) 

8 
succ( zero) 

Fig. 2121 

This algebra does not satisfy the derived axiom 0': 

gQQ=@¢ (j+i)blue =@Gg 
This algebra is not a termalgebra of the variety over the given presentation. 
Therefore axioms derived by induction are not always satisfied by this 
algebra. 
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Example of the Circular Lists 

A somewhat richer example is the Circularlist [Guttag78a]. This data type 
has seven operations. The operations create. insert. delete. value and 
isempty have analogous operations as in type Stack. The operations right 
and join introduce additional complexity by allowing us to rotate the list 
of stored elements and to join two lists into one. The presentation is given 
in Fig. 2125. An informal description is given in the next paragraph. 

Every circular list can be denoted by a variable-free term consisting of 
the Circularlist operation names create and insert (and Nat operation 
names) only. We can represent circular lists in a graphical way. see Fig. 
2122. The arrow refers to the last inserted natural number. 

-0 -0 
create insert( create. nl ) 

insert( insert( create. nl ). n2 ) insert( insert( insert( create. nl ). n2 ). n3) 

Fig. 2122 

The operation isempty indicates whether a circular list is empty. The 
operation value returns the last inserted natural number. The operation 
delete deletes the last inserted natural number from a circular list. The 
operation right rotates the list of stored elements as shown in Fig. 2123. 
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) 

Fig. 2123 

The operation join joins two lists into one as illustrated in Fig. 2124. 

~
l 

join( _ n3 

n2 -0 

Fig. 2124 

sorts Circularlist; Nat; Bool; 
operations 

zero: -> Nat; 
succ: Nat -> Nat; 

true, false: -> Bool; 

create: - > Circular list; 
insert: Circularlist • Nat - > Circular list; 
isempty: Circularlist -> Bool; 
delete, right: Circular list - > Circular list; 
value: Circular list -> Nat; 
join: Circularlist· Circularlist -> Circularlist; 

declare c, cl, C2: Circularlist; n, nt. n2: Nat 
axioms 

isempty( create) = true; 
isempty( insert( c, n) ) = false; 
delete( create) = create; 
delete( insert( c, n ) ) == c; 

-- 1 --
-- 2--
-- 3 --
-- 4--
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value( create) == zero; 
value( insert( c, n ) ) == n; 
right( create) == create; 
right( insert( create, n) ) == insert( create, n); 
right( insert( insert( c, nl ), n2 ) ) == 

insert( right( insert( c, n2 ) ), nl ); 
join( c, create) == c; 
join( Cl> insert( C2, n) ) = insert( jOin( Cl, C2 ), n ); 

Fig. 2125 

Chap. 2 

-- 5--
-- 6--
-- 7 --
-- 8 --

-- 9--
-- 10 --
-- 11 --

For every termalgebra of the presentation the following theorem can be 
proved by induction: 

declare Cl, Cz: Circularlist: n: Nat: 
axiom 

join( right( insert( Cl, n ) ), Cz ) == 
right( insert( join( Cl, Cz ), n ) ); -- 0' --

It can be proved by induction over Cz, For each termalgebra of the 
presentation each object can be denoted by a variable-free term consisting 
of the operation names create and insert only. This can be proved by 
induction. 

To prove axiom 0', we have to prove the induction base 

declare Cl: Circularlist; n: Nat; 
axiom 

join( right( insert( Cl, n ) ), create) == 
right( insert( join( Cl, create ), n ) ); 

and, given the induction hypothesis 

declare Cl, c~: Circularlist; n: Nat; 
axiom 

join( right( insert( Cl' n ) ), c~ ) == 
right( insert( join( Cl, c~ ), n ) ); 

we have to prove the induction conclusion 

declare Cl, c~: Circularlist; n, m: Nat; 
axiom 

join( right( insert( Cl, n ) ), insert( c~, m ) ) == 
right( insert( join( Cl, insert( c~, m ) ), n ) ); 

-- l' --

-- 2' --

-- 3' --
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If axiom O' is denoted as FC Cl. n. Cz ). we have the following induction 
scheme. 

FC Cl. n. create) 
FC Cl. n, c~ ) => FC Cl, n, insertC c~, m ) ) 

The induction base l' can be proved by equational reasoning using axiom 
10 of Fig. 2/25. 
The induction conclusion 3' can be proved by equational reasoning using 
axioms 9 and 11 of Fig. 2125 and using the induction hypothesis. 

2.18 Hidden Operations and Sorts 

The readability of specifications can often be enhanced by using auxiliary 
operations or auxiliary sets of objects. respectively called hidden operations 
and hidden sorts. The abstract data types defined by a presentation consist 
of the sets of objects 8.Sj together with the functions 8.si between these 
sets. of the initial algebra of the category over the presentation. with 
exclusion of hidden sorts and hidden operations. Examples of hidden 
operations have already been given. e.g., the auxiliary operation allover in 
Fig. 2/19. 

Hidden operations and hidden sorts can not only be useful, they can 
even be necessary. Without hidden operations and hidden sorts, many 
abstract data types would require an infinite number of axioms. The 
peekstack [Thatcher78. Nolan791 is such a data type that cannot be 
specified without hidden operations. 

Example of the Peekstacks 

A peekstack is a stack that has a window. This window can cover any 
item of the peekstack or it can disappear. By means of the operation return 
the window covers the top of the peekstack. The op~ration return on the 
empty peekstack has no effect. The window can be moved downwards 
using the operation down. If the window covers the bottom item of the 
peekstack and the operation down is executed. the window will disappear. 
If the window has disappeared, the execution of the operation down is not 
allowed. Only the item covered by the window can be accessed by the 
operation read. If the window has disappeared. the operation read will 
return an error item. The window of the empty peekstack will always 
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disappear. The execution of the operation push is only allowed if the 
window covers the top of the peekstack or if the peekstack is empty 
(otherwise the erroneous peekstack err is obtained). The new item will be 
added on top of the peekstack and the window will cover the new top. 
The execution of the operation pop is only allowed if the peekstack is not 
empty and if the window covers the top of the peekstack (otherwise the 
erroneous peekstack err is obtained). The top item will be removed from 
the peekstack and the window will cover the new top or will disappear if 
the peekstack becomes empty. 

It can be proved that the peekstack requires an infinite number of 
axioms if no hidden operations are used [Thatcher78]. This requirement 
can be intuitively understood by looking at the axioms of Fig. 2126. 

declare s: Peekstack; it, it!> it2, it3: Item; 
axioms 

read( push( s, it ) ) = it; 
read( down( push( push( s, itl ), it2 ) ) ) == itl; 
read( down( down( push( push( push( s, itl ), it2 ), ti3 )) ) ) == itl; 

Fig. 2126 

The introduction of a hidden operation shove is sufficient for the 
construction of a finite axiom system to specify non-erroneous peekstacks. 
The operation shove has the effect of adding an item on top of the 
peekstack irrespectively of the current position of the window, which 
remains at the same position. A specification of the peekstack is given in 
Fig. 2127. For reasons of error handling, the auxiliary operations 
safePeekstack and ifthenelse are introduced. The operation safePeekstack 
yields false if its argument is an erroneous peekstack. The topic of error 
handling will be thoroughly discussed in Chapter 7. 

sorts Item; Peeks tack; 

operations 
error: -> Item; 

newstack: -> Peeks tack; 
push: Peekstack • Item -> Peekstack; 
shove: Peekstack • Item -> Peeks tack; -- hidden operation--
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-- Every non-erroneous peekstack can be written as 
-- shove( ••. shove( push( ... push( newstack, i1 ) ... , ij ), ik ) ••• , iz ) 
-- with possibly no occurrences of the operation shove 
-- (i.e. the top of the peekstack is covered by the window, if any) 
-- and/or no occurrences of the operation push 
-- (i.e. the window has disappeared). 
-- ij is covered by the window, if any. 

err: - > Peeks tack; 
safePeekstack: Peekstack -> Bool; 
pop: Peekstack - > Peeks tack; 
read: Peekstack -> Item; 
return: Peekstack -> Peekstack; 
down: Peekstack - > Peeks tack; 

true, false: -> Bool; 
ifthenelse: Bool * Peeks tack * Peekstack -> Peeks tack; 

declare s, 51, 52: Peekstack; it, it!> it2: Item; 
axioms 

push( err, it) == err; 
push( shove( 5, it1 ), it2 ) == err; 

shove( err, it ) = err; 

safePeekstack( newstack) == true; 
safePeekstack( push( newstack, it) ) == true; 
safePeekstack( push( push( s, it1 ), it2 ) ) == safePeekstack( push( s, it1 ) ); 
safePeekstack( push( shove( s, it1 ), it2 ) ) == false; 
safePeekstack( push( err, it) ) == false; 
safePeekstack( shove( s, it) ) == safePeekstack( s ); 

pop( news tack ) = err; 
pope push( s, it) ) == ifthenelse( safePeekstack( push( s, it) ), 

-- then -- 5, 
-- else -- err ); 

pop( shove( s, it ) ) == err; 
pope err) = err; 

read( news tack ) = error; 
read( push( s, it) ) == ifthenelse( safePeekstack( push( s, it) ), 

-- then -- it, 
-- else -- error ); 

read( shove( s, it ) ) = read( s ); 
read( err) = error; 

return( news tack ) = news tack; 
return( push( s, it ) ) = push( s, it ); 
return( shove( s, it) ) == push( return( s ), it ); 
return( err) = err; 

down( news tack ) = err; 
down( push( s, it ) ) = ifthenelse( safePeekstack( push( s, it) ), 

-- then -- shove( s, it ), 
-- else -- err ); 

down( shove( s, it) ) == shove( down( s ), it ); 
down( err) == err; 

ifthenelse( true, 8!> s2 ) == sl; 
ifthenelse( false, sl, 52 ) == s2; 

Fig. 2127 
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2.19 Bibliographic Notes 

The fundamental ideas of one-sorted algebras go back to Birkhoff 
[Birkhoff38]. Cohn [Cohn65] and Graetzer [Graetzer68]. in which they are 
called universal algebras. Sometimes they are called Iwmogeneous algebras 
[Guttag78c]. 

The pioneers of many-sorted algebras (originally called heterogeneous 
algebras) are Higgins [Higgins63]. and Birkhoff and Lipson [Birkhoff70]. 
who generalized the ideas of one-sorted algebras. 

The idea of defining algebras in terms of operations and axioms was 
picked up by Zilles and Liskov to specify abstract data types like stacks. 
queues and strings by algebraic specifications [Zilles74. Liskov74]. Goguen 
[Goguen74] applied the basic principle of many-sorted initial algebras to 
the denotational semantics of context-free languages. 

The group consisting of Goguen. Thatcher. Wagner and Wright (later 
occasionally also Bloom. Ehrig and Kreowski) is sometimes referred to as 
the ADJ group. 

Many interesting papers on many-sorted algebras can be found in 
literature. The publications of Burstall and Goguen [Bursta1l82] and 
Goovaerts and Van Puymbroeck [Goovaerts83] are very readable texts for 
non-mathematicians. Many small examples of algebraic specifications can 
be found in [Guttag78a]. A more mathematically-oriented article is the 
famous work of Goguen [Goguen78]. Among others the following 
properties are proved there: 

• If the algebras A and B are both initial in a category C of algebras over 
a presentation. then A and B are isomorphic. If A and B belong to a 
category C of algebras over a presentation. if A is initial in C and if A 
and B are isomorphic. then B is initial in C . 

• The initial algebra of the variety over a presentation is the quotient 
algebra of the word algebra (of the presentation) for the equality 
relations defined by the axioms. 

Initial algebras are often characterized by their properties of having no 
junk and having no confusion [Bursta1l82. Futatsugi85]. Having no junk 
means that each object of the algebra can be denoted by at least one 
variable-free term. i.e. the algebra is a termalgebra. Having no confusion 
means that two variable-free terms denote the same object if they can be 
proved to be equal by equational reasoning from the given axioms. A 
termalgebra is often called reacluthle [Sannella85a]. A termalgebra is called 
generated by Ehrig and Mahr [Ehrig85]. They call an algebra of a category 
typical when two variable-free terms denote the same object if and only if 
this can be proved by equational reasoning. A generated and typical 
algebra is always initial. The initial algebra of the variety of the 
presentation is always generated and typical [Ehrig85]. 
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In literature, axioms are also called equations, laws or identities, and the 
terms are sometimes called expressions or formulas. An interpretation is a 
synonym for an assignment. Given an algebra with its presentation and an 
assignment, the object denoted by a term is sometimes called the 
evaluation of the term in the given algebra [Goovaerts83]. In [Goguen78] a 
presentation only consists of a set of axioms over a given signature. The 
set of all axioms derivable by equational reasoning from a given set of 
axioms is called the closure of the given set: a set of axioms forming its 
own closure is called closed [Burstall82]. If the axioms of a presentation 
are closed, the presentation is called a theory [Burstall82]. Because in most 
cases the closure is an infinite set, a theory is usually used as a synonym 
for a presentation [Burstall77]. The sets of objects are usually called 
carriers [Goguen78], in [Guttag78c] they are called phyla and the phylum 
one is interested in, is called the type of interest (TOI). In [Goguen78] a 
word algebra is also called a Herbrand universe. 

[Wirsing82, Laut83] also consider algebras containing partial functions. 
Partial functions however can be made total by adding error elements to 
the sets of objects. 

The notion of initiality is well-known in category theory and initial 
algebras can be seen as a special case of free algebras. Information about 
category theory is available in [Hilton74, Goldblatt79, Ehrig85]. 

Equational Reasoning 

A survey of equational reasoning can be found in [Huet80, Ehrig85, 
Lescanne85]. A well-known problem is to find an algorithm that for any 
presentation can check whether two terms are equal by equational 
reasoning. This problem is called the word problem. It has been proved 
that the word problem is undecidable [Tarski68, McNulty76, Evans78]. A 
partial solution is the Knuth-Bendix algorithm [Knuth67], which does not 
always terminate. The ideas of the Knuth-Bendix algorithm have been 
generalized to the critical pair completion method [Buchberger85], 

The rules of equational reasoning were originally designed for one
sorted algebras. One-sorted algebras need only rules for reflexivity, 
symmetry, transitivity and substitutivity. For many-sorted algebras two 
new rules, the abstraction and concretion rules, have been added to avoid 
unsound deductions for abstract data types having empty sets of objects. 
The following example comes from [Meseguer85a]. 

I sorts A; B; 
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operations 
t, f: -> B; 
not: B -> B; 
and, or: B • B - > B; 
foo: A -> B; 

declare a: A; b: B; 
axioms 

note t) = f; 
note f) == t; 
or( b, note b ) ) == t; 
and( b, note b ) ) == f; 
ore b, b ) == b; 
and( b, b ) = b; 
foo( a ) == not( foo( a ) ); 

Fig. 2128 

The rules of one-sorted equational reasoning give 

Chap. 2 

t == orC fooC a ), notC fooC a ) ) ) == orC fooC a ), fooC a ) ) == fooC a ) = 
andC fooC a ), fooC a ) ) == andC fooC a ). notC fooC a ) ) ) == f 

If these rules of deduction were sound. then the axiom t == f should be 
satisfied by every algebra of the variety over the presentation. But there is 
an algebra belonging to the variety over the presentation in which the 
axiom is not satisfied. It is the algebra consisting of the boolean values and 
an empty set B.A. It is obvious that this algebra satisfies the axioms of Fig. 
2/28. althoughffii) ¢ ffa~ 

A first rigorous treatment of equational reasoning for many-sorted 
algebras was given in [Goguen81]. Using these deduction rules Csee Section 
2.13) we can only derive for the specification of Fig. 2/28 

declare a: A; 
axiom 

t== f; 

But we cannot derive 

axiom 
t == f; 

because the concretion rule cannot be applied. 
In Section 2.13 equational reasoning was based on the reflexivity. 

symmetry. transitivity. substitutivity. abstraction and concretion rules. It 
is possible to use alternative sets of equational rules that are equivalent to 
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the given one, see Chapter 5 in [Ehrig85]. In the same chapter the strong 
relationship between equational reasoning and term rewriting is 
thoroughly discussed. 

Induction 

Many formal definitions of induction can be found in literature. The most 
general (but rather tedious) definition we have found, is given in [Boyer79] 
for LISP programs. The correctness of proving by induction is also 
considered there. Many heuristic rules are given in [Boyer79] to find an 
appropriate induction scheme that is complete and sound. The rules are 
based on the natural relation between recursion and induction. In 
[Bevers85], these ideas have been specifically applied on algebraic 
specifications. 

The Knuth-Bendix algorithm, which was mentioned earlier, can not 
only be used for equational reasoning but also for proving by induction. 
Using this algorithm is sometimes called induction without induction or 
inductionless induction [Goguen80, Musser80, Huet82]. 

Graphical Notation 

The graphical notation we used in this chapter is based on [Lewi86], where 
a similar notation for the semantic description of algorithmic languages is 
used. Another graphical notation can be found in [Goguen78]. An example 
of such notation for the presentation of Fig. 2/15 is given in Fig. 2/29. The 
main difference is that in our graphical notation the algebra (semantic 
part) is pictured, while in [Goguen78] the signature (syntactic part) is 
pictured. 

Hidden Operations and Sorts 

The use of hidden operations was the subject of an interesting discussion 
ending with the conclusion that hidden operations strictly increase the 
expressive power of algebraic specifications [Ehrig85]. By using hidden 
operations, we are able to specify any computable total function, and some 
non-computable total functions too [Ehrig85]. Other examples of hidden 
operations can be found in [Laut83], where the Pascal file type is specified. 
An example of a hidden sort can be found in [Mallgren82], where it is used 
for correctness proofs. 
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Fig. 2129 

Initial Versus Final Algebras 

In this chapter the mathematical model on which abstract data types have 
been based. is the initial algebra. Another frequently used mathematical 
model is the final algebra. Roughly speaking. the initial algebra defined by 
a presentation is the termalgebra satisfying the given axioms that has the 
greatest possible number of objects. whereas the final algebra is the 
termalgebra satisfying the given axioms that has the smallest possible 
number of objects. Obviously. between these two extreme algebras. there 
can be a wide spectrum of algebras. 

The basic philosophy of initial semantics is that two variable-free terms 
denote a different object unless it can be proved from the given axioms 
that they denote the same object. The basic philosophy of final semantics 
is that two variable-free terms Cof the same sort) denote the same object 
unless it can be proved from the given axioms that they denote a different 
object. 

The difference between initial and final algebras will be illustrated by 
the presentation of Fig. 2/30. We assume that the abstract data type of 
boolean values including an ifthenelse function and the abstract data type 
of natural numbers including an equality function have been defined. 
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sort X; 
operations 

empty: -> X; 
insert: Nat * X -> X; 
is in: Nat * X -> Bool; 

declare n, nt. n2: Nat; x: X; 
axioms 

insert( nt. insert( n2, x) ) == insert( n2, insert( nb x) ); 
isin( n, empty) == false; 
isin( nb insert( n2, x ) ) = 

ifthenelse( eq( nb n2 ), 
-- then -- true, 
-- else -- isin( nt, x ) ); 

Fig. 2130 
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The initial algebra of this presentation is the bag of natural numbers 
with the functions insert and isin. The first axiom expresses that the order 
of insertion is irrelevant. The two other axioms define the function isin. 
The number of times a natural number has been inserted, is relevant. 
Two bags are different if and only if at least one natural number has been 
inserted a different number of times. 

The final algebra of this presentation is the set of natural numbers with 
the functions insert and isin. Two sets are equal unless the function is in 
gives a different result, Le. one set contains a natural number that is not 
included in the other set. The first axiom is redundant, it can be deleted 
without changing the final semantics. 

Sometimes initial and final semantics are both used in a hierarchy of 
specifications [Goovaerts83]. Such hierarchy starts with initial semantics. 
Each level of the hierarchy has to preserve the structure of the previously 
defined abstract data types, otherwise the specification is inconsistent or 
not sufficiently complete. If only final semantics are used, an abstract data 
type (usually Bool, e.g., [Hornung80]) must be predefined, otherwise all 
sets of objects will degenerate into empty sets or singletons. However, this 
predefined abstract data type cannot be specified using final semantics 
only. 

An important reason why initial semantics are more frequently used in 
literature, is that algebraic specifications based on initial algebras can, in 
general, easier be made constructive, thus enabling rapid prototyping. 
Some abstract data types however are more naturally specified in terms of 
a final algebra [Goovaerts83]. 

A mathematical definition of final algebras can be found in [Wand79, 
Kamin80, Bergstra83]. An algebra F is final in a category C of algebras 
over a presentation if and only if F belongs to C and for each algebra A in 
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C. a unique homomorphism in C from A to F does exist. In [Hornung80. 
Wirsing82] final algebras are called terminal algebras. Some examples in 
[Guttag86] are based on final semantics. others are based on behavioural 
equivalence. 

Isomorphisms Versus Behavioural Equivalence 

Roughly speaking. we may say that two algebras belonging to the variety 
over a given presentation. are behaviourally equivalent with respect to a set 
of observable sorts if it is not possible to distinguish them by evaluating 
terms of an observable sort [Sannella85a. Sannella87]. Notice that the 
evaluated terms can have proper subterms of a sort that is not observable. 
Usually. the initial algebra of a presentation is taken. and this algebra is 
generalized to the class of algebras that belong to the variety over the given 
presentation and that are behaviourally equivalent to the initial one with 
respect to the observable sorts. Abstract in abstract data types now means 
abstract up to behavioural equivalence instead of up to isomorphism. This 
form of abstraction is called behavioural abstraction [Sannella85a]. 

Again consider the presentation of Fig. 2130. Using the previous 
definition. the initial algebra (bag) and the final algebra (set) are 
behaviourally equivalent with respect to {Bool}. 

One of the first articles on behavioural equivalence was [Giarratana76]. 
Guttag used behavioural equivalence in [Guttag77. Guttag78b]. 
[Sannella85a] called it observational equivalence. The examples given in 
[Guttag78a] seem to be based on behavioural equivalence. 

In [Meseguer85a] abstract data types with abstract in the sense of up to 
behavioural equivalence are called abstract machines. A sharp distinction 
is made between abstract data types. which are just algebras. e.g .• initial or 
final algebras. and abstract machines. which are behavioural equivalent 
with respect to the visible sorts, i.e. observable sorts. 

A typical example of an abstract data type is that of the integers. which 
consists of objects. i.e. integers. and of functions defined upon them. e.g .• 
addition and subtraction. A typical example of an abstract machine is a 
software module in the sense of [Parnas72a]. Such a module specifies only 
the behaviour and not the different data structures. which are considered 
as implementation details. Algebras that represent different abstract data 
types. i.e. are not isomorphic. may represent the same abstract machine. i.e. 
may be behaviourally equivalent. E.g .• the initial and final algebra of Fig. 
2130 represent different abstract data types (bag and set) but they 
represent the same abstract machine with respect to {Bool}. This abstract 
machine may even be represented by an algebra (of the variety of the 
presentation of Fig. 2130) that is not a termalgebra. as long as this algebra 
is behaviourally equivalent to bag and set. 
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Notice that abstract machines generalize the idea of abstract data types 
since in case all sorts are visible two machines are equivalent if and only if 
they are isomorphic. i.e. abstract machines become abstract data types if all 
sorts become visible [Meseguer85a]. 

The price to be paid for this generalization is a higher complexity in 
rigorous reasoning because two machines that are behaviourally equivalent 
need not be isomorphic. An axiom that is satisfied by an algebra need not 
be satisfied by another algebra that is behaviourally equivalent to the first 
one. E.g .• the axiom 

insert( n1. insert( n1. x ) ) == insert( n1. x ); 

is satisfied by the final but not by the initial algebra of Fig. 2/30. 
However. both algebras are behaviourally equivalent with respect to 
{Boo!}. as mentioned above. 
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3. An Algebraic Specification 
Language 

"The metalanguage of a formal definition must not become 
a language known to only the priests of the cult. Tempering science 

with magic is a sure way to return to the Dark Ages." 
M. Marcotty 

In Chapter 2 we dealt with the mathematical foundations of algebraic 
specifications. These foundations are important for gaining insight into the 
underlying concepts of the specification formalism. From these 
foundations it became clear that, unlike informal specifications, algebraic 
specifications can be made in a precise and unambiguous way. 

To illustrate these underlying concepts, a simple notation for algebraic 
specifications was used. Such a notation is quite satisfactory to describe 
small examples. In this chapter the emphasis is put on the development of 
large software. Then, the simple notation used in Chapter 2 is 
inappropriate. What we need in the first place is a linguistic support to 
express modularity of software design to reduce complexity. This leads to 
the introduction of the notion of module. Such modules contain import 
and export clauses to express the interfaces between modules, also called 
intermodule dependency, and to provide additional safety. Modules with 
import and export clauses are analogous to what is available in traditional 
high level programming languages as Ada, Modula-2 and Clu. 

Another important reason why the simple notation used in Chapter 2 is 
inappropriate is the absence of any form of parameterization. The 
algebraic specification language we propose in this chapter provides a high 
degree of parameterization. We believe that specification by abstraction 
and specification by parameterization are both powerful means to design 
modular and reusable software. An important aspect of parameterization 
in algebraic specifications is that the requirements of the interfaces 
(between formal and actual parameters) are not only of a syntactic nature, 
but also of a semantic one. This is in sharp contrast with parameterization 
in conventional programming languages as Ada and Clu, where semantic 
requirements can only be expressed in the form of program comment. 
Incorporation of semantic requirements within the algebraic specification 
language enhances software robustness. Another motivation for 
introducing parameterized specifications is the treatment of incomplete 
specifications in which some design decisions are delayed. Such design 
features can be treated as parameters of the specification. In this way a 
design can be made top-down. 
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Modules and their intermodule dependency form a graph. Hierarchical 
specifications are a special case. Hierarchical specifications can be built 
bottom-up. Starting from the primitive modules. new modules can be 
constructed that use (via import clauses) these primitive modules as 
building blocks and so on. To maximize the profits of hierarchical 
specifications. each level of the hierarchy must meet some constraints. 
called hierarchical constraints, to preserve the structure of the previous 
levels. Hierarchical constraints can be mechanically verified. enhancing 
software reliability. 

To enhance readability. we introduce a number of notational extensions 
such as ifthenelse. case and let constructs. In our specification language 
prefix. infix. postfix as well as mixfix notations are allowed as long as the 
notation does not give rise to conflicts. Also overloading of operation 
names is permitted. Other notational extensions are the use of qualified 
names and renaming facilities. These naming and renaming facilities are 
useful to realize the principle of reusability in software development 
without being forced always to use the same names. Moreover. these 
facilities are needed to avoid name conflicts. 

Syntax Notation 

The syntax of the algebraic specification language* is described using a 
modified version of Backus-Naur Form. Syntactic categories are 
represented by names possibly containing blanks. A nonterminal category 
is defined in terms of other categories by a kind of equation known as 
production rule. Categories that cannot be decomposed further are called 
terminal. The name of a nonterminal category is enclosed by < and >. 
The name of a terminal category is enclosed by ". A production rule 
consists of the name of the (nonterminal) category being defined followed 
by the symbol = and its defining sequence. Other symbols used are 
vertical bars that separate alternatives. square brackets that enclose 
optional items. a plus following an item to indicate that the item must 
appear once or many times. and a star following an item to indicate that 
the item may be omitted. appear once or be repeated many times. The plus 

Although a detailed description of the proposed algebraic specification language will be 
given. this text is not intended as a reference manual. Detailed information about. e.g .• the 
lexical structure is not given. 
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and the star have the highest priority whereas sequencing has the lowest 
one. Parentheses may be used to change priorities. 

3.1 Modularity 

3.1.1 Modules 

Sorts, operations, declarations and/or axioms that logically belong together, 
are grouped into a nwdule. A specification is built up of a number of 
modules. A specification has the following syntactic form: 

<specification> = ( <module> )+ 

<module> = 
"module" [ <module name> ] ";" 

[ <import clause> ] 
[ <sorts part> ] 
[ <operations part> ] 
[ <declarations part> ] 
[ < axioms part> ] 

"end" "module" [ <module name> ] ";" 

<import clause> = 
"import" "all" "from" <module name list> ";" 

<module name list> = <module name> ("," <module name> )* 

< sorts part> = 
( " "I" ")( "") sort sorts < sort name > ; + 

Usually, each module contains at most one sort. A module has the same 
syntax as a presentation except for the enclosing keywords, the module 
name and the import clause (if any). The import clause of a module M 
enumerates the names of all other modules M I , M2 , ••. , Mm from which M 
uses sorts and operations. These modules are called the directly imported 
modules of M. The directly and indirectly imported modules of M I , M2 , 

... and Mm are said to be indirectly imported modules of M. A module 
without import clause is called a primitive nwdule. Actually a specification 
forms a directed graph. The modules represent the nodes, and the import 
clauses, which describe the dependency relationships between the modules, 
represent the arcs of the graph. 
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In Chapter 2 the notions of abstract data type and term language were 
defined for presentations. When we deal with modules. these definitions 
have to be slightly modified. The abstract data types defined by a 
specification are the abstract data types defined by the presentation 
obtained by grouping the sorts. operations. declarations and axioms of the 
modules of the specification. Analogously. the termlanguage defined by a 
specification is defined as the termlanguage defined by the presentation 
obtained by grouping the sorts. operations. declarations and axioms of the 
modules of the specification. 

The specification of Stack is shown in Fig. 3/1. The modules Bool and 
Nat are primitive modules. directly imported by the module Stack. 
Although the specification of Fig. 3/1 is equivalent to that of Fig. 2/14. it 
is more modular and therefore more readable. 

module Baal; 
sort Baal; 
operations 

true. false: -> Baal; 
end module Baal; 

module Nat; 
sort Nat; 
operations 

zero: -> Nat; 
succ: Nat -> Nat; 

end module Nat; 

module Stack; 
import all from Baal. Nat; 
sort Stack; 
operations 

newstack: -> Stack; 
push: Stack • Nat -> Stack; 
is news tack: Stack - > Baal; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s: Stack; n: Nat; 
axioms 

isnewstack( news tack ) == true; 
isnewstack( push( s, n ) ) = false; 
pope newstack ) = news tack; 
pope push( s, n ) ) = s; 
tope news tack ) == zero; 
tope push( s, n ) ) = n; 

end module Stack; 

Fig. 3/1 
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Modularity provides us with a means to specify an abstract data type 
in a stepwise way. Roughly speaking. in a first step a module is designed 
containing only the sort and the primitive (Le. basic) operations. In the 
next steps modules defining more sophisticated operations are added. 

Let us specify sets of natural numbers. see Fig. 3/2. We need the 
operation emptyset. which represents the empty set. and the operation 
insert. which puts a natural number into a set. They are defined in the 
module PrimitiveSet. The axioms state that the order of insertions and the 
number of duplicates are irrelevant. More sophisticated operations may be 
the union. the intersection and the operation isin. which indicates whether 
a natural number belongs to a set. They are specified in module 
ExtendedSet. ExtendedSet imports from Boo!. Nat. ExtendedNat and 
PrimitiveSet. 

module ExtendedNat; 
import all from Bool. Nat; 
operation 

equal: Nat * Nat -> Bool; 
declare n. nb n2: Nat; 
axioms 

equal( zero. zero) == true; 
equal( zero. succ( n) ) == false; 
equal( succ( n ), zero) == false; 
equal( succ( n1 ). succ( n2 ) ) == equal( n1, n2 ); 

end module ExtendedNat; 

module PrimitiveSet; 
import all from Nat; 
sort Set; 
operations 

emptyset: -> Set; 
insert: Nat * Set - > Set; 

declare s: Set; n. nb n2: Nat; 
axioms 

insert( nb insert( n2. s ) ) == insert( n2. insert( nb s ) ); 
insert( n. insert( n, s ) ) = insert( n. s ); 

end module PrimitiveSet; 

module ExtendedSet; 
import all from Bool, Nat, ExtendedNat. PrimitiveSet; 
operations 

isin: Nat * Set -> Bool; 
union, intersection: Set * Set -> Set; 
if: Bool * Set * Set -> Set; 

declare n. nb n2: Nat; s, sl, s2: Set; 
axioms 

isin( n. emptyset) == false; 
isin( nb insert( n2. s ) ) == 

if( equal( nb n2 ), 
-- then -- true, 
-- else -- isin( nb s ) ); 
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union( s, emptyset ) == s; 
union( Sl, insert( nl> S2 ) ) == insert( n1> union( Sl, S2 ) ); 
interseetion( s, emptyset) == emptyset; 
interseetion( S1> insert( n, S2 ) ) = 

if( isin( n, Sl ), 
-- then -- insert( n, interseetion( s1> s2 ) ), 
-- else -- interseetion( Sl, s2 ) ); 

if( true, sl, s2 ) = sl; 
if( false, s1> S2 ) == S2; 

end module ExtendedSet; 

Fig. 312 
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Convention: If no module name is explicitly given, the convention is 
that the module name is identical to the first sort name defined within the 
module. The module Nat of Fig. 3/1 is then equivalent to that of Fig. 3/3. 

module; 
sort Nat; 
operations 

zero: -> Nat; 
suee: Nat -> Nat; 

end module; 

Fig. 3/3 

3.1.2 Import and Export Clauses 

The import clauses as defined so far will be further refined as in Modula-2 
[Wirth82]. Except when the keywords all or all except are used. the 
import clause must explicitly list not only the directly imported modules 
but also the sorts and operations imported from these modules. If a 
module M imports all sorts and operations that are exported by a module 
Mi to it. the import clause of M may contain 

all from Mi 

Analogously. the import clause may contain 

all except ... from Mi : 
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Also export clauses are considered. The export clause of a module lists 
the sorts and operations that are defined within the module and that can be 
used outside the module. Optionally, the export list may contain the 
names of the module(s) receiving the export. Clearly, hidden sorts and 
hidden operations will not be exported in order to disable their use outside 
the module in which they are defined (information hiding). If all sorts 
and operations defined within a module are exported, the enumeration list 
may be replaced by the keyword all. One can also use the keywords all 
except followed by the list of sorts and operations that are not exported. 

Import and export clauses provide an extra protection for the designer 
as well as for the user of modules. This protection results in specifications 
of higher quality and reliability. 

A module with import and/or export clauses has the following 
syntactic form: 

<module> = 

"module" [ <module name> ] ";" 
[ <import clause> ] 
[ <export clause> ] 
[ <sorts part> ] 
[ <operations part> ] 
[ <declarations part> ] 
[ < axioms part> ] 

"end" "module" [ <module name> ] ";" 

<import clause> = 

"import" ( <item name list> "from" <module name list> ";" )+ 

<export clause> = 

"export" ( <item name list> ["to" <module name list> ] ";" )+ 

<item name list> = 

<item name> ( "," <item name> )* 
I "all" [ "except" <item name> ("," <item name> )* ] 

<item name> = <sort name> I <operation name> 

<module name list> = <module name> ("," <module name> )* 

< sorts part> = 
( " "I" ")( "") sort sorts < sort name > ; + 

In Fig. 3/4 the specification of Fig. 3/1 is extended with import and 
export clauses. 
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module Bool; 
export Bool, true, false; 
sort Bool; 
operations 

true, false: -> Bool; 
end module Bool; 

module Nat; 
export Nat, zero, succ; 
sort Nat; 
operations 

zero: -> Nat; 
succ: Nat -> Nat; 

end module Nat; 

module Stack; 
import Bool, true, false from Bool; 

Nat, zero from Nat; 
export all; 
sort Stack; 
operations 

news tack: - > Stack; 
push: Stack * Nat -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s: Stack; n: Nat; 
axioms 

isnewstack( news tack ) = true; 
isnewstack( push( s, n) ) == false; 
pope newstack ) = news tack; 
pope push( s, n ) ) == s; 
tope news tack ) == zero; 
tope push( s, n) ) == n; 

end module Stack; 

Fig. 3/4 

3.1.3 Export of the Import 

Modularity 73 

-- 1 --
-- 2--
-- 3 --
-- 4--
-- 5--
-- 6 --

A module can not only export the sorts and operations defined within the 
module itself. but it can also export sorts and operations imported from 
elsewhere by the module. If an imported sort or operation is exported 
again, it must be mentioned explicitly in the export clause together with 
the module it is imported from. An example is given in Fig. 3/5. 
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module ExtendedStack; 
import Nat, zero, succ from Nat; 

Stack, newstack, push, pop, top, isnewstack from Stack; 
export length from ExtendedStack; 

Stack, newstack, push, pop, top, isnewstack from Stack; 
operation 

length: Stack -> Nat; 
declare s: Stack; n: Nat; 
axioms 

length( newstack ) = zero; 
length( push( s, n ) ) == succ( length( s ) ); 

end module ExtendedStack; 

module X; 
import all from ExtendedStack; 
•.. news tack ... 
• •• length .,. 

end module X; 

Fig. 3/5 

3.2 Hierarchical Specifications 

Chap. 3 

In general. a specification forms a directed graph. As mentioned in Section 
3.1.1, the modules represent the nodes, and the dependency relationships 
represent the arcs of the graph. The dependency relationships are described 
by the import clauses of the modules involved in the graph. A special case 
is the hierarchical specification where the directed graph is acyclic. An 
example of a hierarchical specification was given in Fig. 3/4. If a module 
A is directly or indirectly imported by a module B, module B must not be 
directly or indirectly imported by A in a hierarchical specification. In 
Section 3.5 non-hierarchical specifications will be studied. 

Making hierarchical specifications is a useful design method because the 
amount of complexity the human mind has to cope with at any level. is 
considerably less than that of the whole specification. A reader as well as 
a designer can focus on the primitive modules first. Next, the modules 
that directly import these ones can be studied and built, and so on. So we 
need not understand the specification as a whole at once, but we can gain 
insight in a stepwise way. Such a design is called bottom-up. 
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Hierarchical Constraints 

To maximize the profits of hierarchical specifications during the bottom-up 
design, each new level of the hierarchy must preserve the structure of the 
algebra defined by the previous levels. Therefore, two hierarchical 
constraints are introduced. Given a hierarchy H of modules meeting the 
hierarchical constraints. A new module M, importing from one or more 
modules of the hierarchy H, can be added to that given hierarchy H 
without violating the hierarchical constraints if the structure of the 
algebra defined by H is preserved: 

1. Any two objects that were defined as different in the initial algebra 
of the given hierarchy H, must not become equal after addition of the 
new module M. This constraint is called no confusion. It says that if 
two arbitrary variable-free terms belonging to the termlanguage of 
the given hierarchy H cannot be proved to be equal by equational 
reasoning in H, then it must not be possible to prove them to be equal 
by equational reasoning after addition of M. 

2. A set of objects defined in the initial algebra of the given hierarchy H, 
must not be extended with new objects after addition of the new 
module M. This constraint is called no junk. It says that if an 
arbitrary variable-free term t belongs to the term language of the 
extended hierarchy, and if the sort of t was defined in H, then 
another variable-free term t' that belongs to the term language of H 
must exist such that t' can be proved equal to t by equational 
reasoning in the extended hierarchy. 

A set of primitive modules form a hierarchy that always meets the 
hierarchical constraints. 

Example of the Stacks 

In the stack example of Fig. 3/4 the dependency graph is hierarchical and 
the hierarchical constraints are met since the structure of the algebra 
defined by the hierarchy is preserved when the module Stack is added: 

1. The first two axioms are of sort Bool. To prove that true and false 
do not become equal, it must be proved that newstack and push( s, 
n) are unequal for each possible assignment. This proof is 
straightforward. The last two axioms are of sort Nat. Analogously, 
two natural numbers that are different in module Nat, do not become 
equal. 
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2. We will use the property that with axioms 3 and 4 every occurrence 
of pop in a variable-free term can be eliminated. The only operation 
that could define a new object belonging to the set Bool is the 
operation isnewstack. But using the first 2 axioms and the property 
mentioned, it is easy to see that the result of isnewstack always can 
be reduced to true or false. Analogously, no new object belonging to 
the set Nat has been defined. 

The first hierarchical constraint would have been violated (confusion) if, 
e.g., the axiom: 

push( newstack, zero ) == newstack: 

was added because using this and the first 2 axioms it can be proved that: 

true == false: 

The second hierarchical constraint would have been violated (junk) if, e.g., 
the first axiom was forgotten, because then 

isnewstack( newstack ) 

would denote a new boolean object. 

3.3 Notational Extensions 

3.3.1 Ifthendse Construct 

In Fig. 3/6 a queue of natural numbers is specified. A queue is a first-in 
first-out list. The operation newq creates an empty queue, addq adds a 
natural number to the given queue, isnewq tests whether a queue is empty, 
the operation deleteq removes the least recently inserted natural number, 
frontq returns the least recently inserted natural number, and appendq 
concatenates two queues into a single one. To avoid error treatment at this 
stage, which is discussed in Chapter 7, the operation deleteq applied to an 
empty queue returns the empty queue, and the operation frontq applied to 
an empty queue returns zero. 

module Queue; 
import Bool, true, false from Bool; 

Nat from Nat; 
export all; 
sort Queue; 
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operations 
newq: -> Queue; 
addq: Queue· Nat -> Queue; 
isnewq: Queue -> Bool; 
deleteq: Queue -> Queue; 
frontq: Queue -> Nat; 
appendq: Queue· Queue -> Queue; 

declare q, ql> q2: Queue; n: Nat; 
axioms 

isnewq( newq ) = true; 
isnewq( addq( q, n ) ) == false; 
deleteq( newq ) == newq; 
deleteq( addq( q, n ) ) == 
if isnewq( q) 

then newq 
else addq( deleteq( q), n) 

end if; 
frontq( newq ) == zero; 
frontq( addq( q, n) ) == 

if isnewq( q) 
then n 
else frontq ( q ) 

end if; 
appendq( q, newq) == q; 
appendq( ql> addq( q2, n ) ) = 

addq( appendq( q1, q2 ), n ); 
end module Queue; 

Fig. 3/6 
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In Fig. 3/6 the ifthenelse construct, which the reader is undoubtedly 
familiar with, is introduced. An ifthenelse construct has the following 
syntactic form: 

<ifthenelse construct> = 

"if" < boolean expression> 
"then" < expression> 
"else" <expression> 

"end" "if" 

The ifthenelse construct is not a new concept, it is only an overloaded 
language-defined operation in mixfix notation. It is equivalent to a family 
of user-defined operations if Sort, one for each sort Sort, using the 
traditional prefix notation. This is done for the example of Fig. 3/6 
resulting in the less readable specification of Fig. 3/7. 
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module Queue; 
import Bool, true, false from Bool; 

Nat, zero from Nat; 
export all; 
sort Queue; 
operations 

newq: -> Queue; 
addq: Queue * Nat -> Queue; 
isnewq: Queue -> Bool; 
deleteq: Queue -> Queue; 
frontq: Queue -> Nat; 
appendq: Queue * Queue -> Queue; 
if Nat: Bool * Nat * Nat -> Nat; 
if Queue: Bool * Queue * Queue -> Queue; 

declare q, qt. q2: Queue; n, nt. n2: Nat; 
axioms 

isnewq( newq ) == true; 
isnewq( addq( q, n ) ) == false; 
deleteq( newq ) == newq; 
deleteq( addq( q, n ) ) == 

ifQueueC isnewq( q ), newq, addq( deleteq( q ), n) ); 
frontq( newq ) == zero; 
frontq( addq( q, n) ) = 

ifNat( isnewq( q ), n, frontq( q ) ); 
appendq( q, newq ) = q; 
appendq( qt. addq( q2, n ) ) = 

addq( append( ql, q2 ), n ); 
ifNat( true, nl, n2 ) == nl; 
ifNat( false, nt. n2 ) == n2; 
ifQueue( true, qt. q2 ) == ql; 
ifQueueC false, qt. q2 ) == q2; 

end module Queue; 

Fig. 317 

3.3.2 Mixfix Notations 

Chap. 3 

The mixfix notation used for the ifthenelse construct can also be used for 
user-defined operations as long as the notation remains unambiguous. 
Prefix, infix and postfix notations are particular cases of mixfix notations. 

In Fig. 3/8 a specification for the abstract data type of the boolean 
values is given, using its classical mixfix notation. The underscore . _. is a 
place holder (indicating the places of the arguments). Parentheses avoid 
ambiguous notations. 

module Boo1; 
export all; 
sort Boo1; 
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operations 
true, false: -> Bool; 
not _: Bool-> Bool; 
_ and _: Bool * Bool - > Bool; 
_ or _: Bool * Bool - > Bool; 
_ = > _: Boot * Bool - > Bool; 
_ <= _: Bool * Bool-> Bool; 
_ <=> _: Bool * Bool-> Bool; 

declare b, b1 , b2 , b3 : Bool; 
axioms 

band b == b; b or b == b; 
b1 and b2 == b2 and b1 ; b1 or b2 == b2 or b1; 

b1 and ( b1 or b2 ) == b1; b1 or ( b1 and b2 ) = b1; 

b and true == b; b or false == b; 
b and not b = false; b or not b == true; 
not true == false; not not b == b; 
( b1 and b2 ) and b3 == b1 and ( b2 and b3 ); 

( b1 or b2 ) or b3 == b1 or ( b2 or b3 ); 

b1 and ( b2 or b3 ) == ( b1 and b2 ) or ( b1 and b3 ); 

b1 or ( b2 and b3 ) == ( b1 or b2 ) and ( b1 or b3 ); 

b1 => b2 == if b1 then b2 else true end if; 
b1 <= b2 == b2 => b1 ; 

b1 <=> b2 == (b1 => b2) and (b1 <= b2); 

end module Bool; 

Fig. 3/8 
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In Fig. 3/9 the specification of the unbounded array of boolean values 
with natural numbers as indices is given. The mixfix notation _ [ _ / _] 
is used for the assign operation. If no place holders are given for a 
nonnullary operation, the operation will be used in the classical prefix 
notation with parentheses and commas, e.g., the operation read. We 
assume that the module Nat contains an equality operation that has the 
classical infix notation with equality sign: 

_ = _: Nat * Nat -> Bool; 

module Array; 
import Bool, true, false, not _ from Bool; 

Nat, _ = _ from Nat; 
export all; 
sort Array; 
operations 

empty: -> Array; 
-- This is the empty array. 

_[ _I _]: Array· Bool· Nat -> Array; 
-- This operation assigns a boolean value to a given array 
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-- with a given natural number as index. 

isdefault: Array * Nat -> Bool; 
-- This operation checks whether the given index (natural number) of 
-- the given array has still its initial default value true. 

read: Array * Nat -> Bool; 
-- This operation returns the boolean value of the index indicated 
-- by the natural number in the given array. 

declare ar: Array; n, nI> n2: Nat; b, bI> b2: Bool; 
axioms 

not ( nl = n2 ) ~ ar [ bl / nl ] [ b2 / n2 ] == ar [ b2 / n2 ] [ bl / nl ]; 

Chap. 3 

-- The order of assignments is irrelevant as long as the indices are not equal. 
-- Conditional axioms are discussed in Section 3.3.3. 

ar [ bl / n ] [ b2 / n ] == ar [ b2 / n ]; 
-- For a given index, only the last assignment is relevant. 

isdefault( empty, n) == true; 
isdefault( ar [ b / nl ], n2 ) == 

if nl = n2 
then false 
else isdefault( ar, n2 ) 

end if; 
read( empty, n) == true; -- Arrays are initialized with true. 
read( ar [ b / nl ], n2 ) == 

if nl = n2 
then b 
else read( ar, n2 ) 

end if; 
end module Array; 

Fig. 3/9 

3.3.3 Conditional Axioms 

In Fig. 3/9 a conditional axiom was used. This is not a new concept since a 
conditional axiom of the form 

< boolean expression> => < expression 1 > == < expression 2> ; 

can easily be transformed into an unconditional axiom 

< expression 1 > == 
if < boolean expression> 

then < expression 2 > 
else < expression 1 > 

end if; 
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3.3.4 Case Constructs 

Using case constructs, the number of axioms can sometimes be 
considerably reduced. A case construct has the following syntactic form: 

< case construct> = 
"case" <case index> "of" 

( <case arm> )+ 
[ "otherwise" ":" <expression> ";" ] 

"end" "case" 

< case index> = < expression> 

<case arm> = <choice> ":" <expression> ";" 

<choice> = <expression> 

The case index and the choices of the different case arms of a case 
construct must be of the same sort. An example of case constructs is given 
in Fig. 3/10, also the use of otherwise is illustrated. The meaning of case 
constructs is straightforward. 

module Stack; 
import Bool, true, false from Bool; 

Nat, zero from Nat; 
export all; 
sort Stack; 
operations 

news tack: - > Stack; 
push: Stack • Nat - > Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s, s1: Stack; n: Nat; 
axioms 

isnewstack( s ) == 
case s of 

news tack: true; 
otherwise: false; 

end case; 
pope s) == 

case s of 
news tack: newstack; 
push( s1> n): s1; 

end case; 
tope s) == 

case s of 
news tack: zero; 
push( s1, n): n; 
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I .nd,~; 
end module Stack; 

Fig. 3/10 

3.3.5 Let Constructs 

The readability can be enhanced by introducing a let construct. which has 
the form: 

< let construct> = 
"let" 

<let arm> 
". " m 

< let expression> 
"end" "let" 

I . bl " " ."" < et arm> = < vana e> == < expressIon> : 

< let expression> = < expression> 

with the variable and the expression of the let arm being of the same sort. 
The sort of the let expression is the sort of the let construct. The meaning 
of the let construct is the same as that of the expression obtained by 
replacing in the given let expression a11 free occurrences of the variable of 
the let arm by the expression of the let arm. 

Also a mUltiple let construct is possible: 

< let construct> = 
"let" 

( <let arm> )+ 
II· " m 

< let expression> 
"end" "let" 

<let arm> = <variable> "==" <expression> ":" 

< let expression> = < expression> 

A mUltiple let construct has the same meaning as the nesting of the 
corresponding single let constructs. For instance. Fig. 3/11 is equivalent to 
Fig. 3/12. 
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let xl = < expression 1>; 
X2 == < expression 2> ; 

xn == <expression n>; 
in 

< let expression> 
end let 

Fig. 3/11 

let xl == < expression 1>; 
in 

let x2 = <expression 2>; 
in 

let xn == < expression n> ; 
in 

< let expression> 
end let 

end let 
end let 

Fig. 3/12 
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An example of the use of a let construct is given in the term of Fig. 
3/13, which has the same meaning as the term of Fig. 3/14. 

let nl = tope 8); 
n2 == tope pop( s ) ); 
81 = pope pope s ) ); 

in 
push( push( 81> nl ), n2 ) 

end let 

Fig. 3/13 
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declare s: Stack; 

push( push( pope pope s ) ), tope s ) ), tope pope s ) ) ) 

Fig. 3/14 

3.3.6 Qualified Names and Renaming 

To avoid name conflicts, a sort or an operation name can be qualified by its 
module name. An example is given in Fig. 3/15. 

module; 
import z from X; 

t, u, z from Y; 
••• X.z ••• 
... Y.z ••• 

end module; 

Fig. 3/15 

If a sort or an operation is imported from another module, it can be 
given a more appropriate name. A rename clause has the following 
syntactic form: 

<rename clause> = "rename" 
<item name> "as" ( "identifier" I <pattern> ) ( "," 
<item name> "as" ( "identifier" I <pattern> ) )* 

<item name> = <sort name> I <operation name> 

<sort name> = "identifier" I "qualified identifier" 

<operation name> = "identifier" I "qualified identifier" I <pattern> 

<pattern> = ( <token> 1"_" )+ 

An example is given in Fig. 3/16. 
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module; 
import Bool. true. false. _ and _ from Bool 

rename 
true as waar. 
false as onwaar. 
_and _as _en...,; 

end module; 

Fig. 3116 
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3.4 Parameterized Specifications 

In the previous sections we studied the stacks of natural numbers. We 
may specify stacks of booleans. stacks of natural numbers. and even stacks 
of stacks of natural numbers. It is rather tedious to repeat a stack 
definition for each new stack with a different sort of stack elements. 
Indeed. all those definitions hardly depend on the sort of the elements. 

For this reason we introduce the notion of scheme. Intuitively speaking, 
a scheme is a meta-language function that at every call (instantiation) with 
the appropriate number of abstract data types (actual nwdules) using a 
parameter morphism (parameter binding mechanism). results in new 
abstract data types. A scheme has the following syntactic form: 

<scheme> = 
n h "h [ "[" ( . ) "]"]"" sc eme <sc eme name> <requrrement> + : 

( < module> )+ 
" d"" h "[ h ]"" en sc eme <sc eme name> : 

After the scheme name follow the requirements (if any) enclosed in 
square brackets. These requirements are said to be claimed by the scheme. 
Requirements can be seen as formal nwdules of the scheme. with which 
actual modules will be bound when an instantiation of the scheme is made. 
A requirement states that sorts and/or operations in the actual modules of 
an instantiation must satisfy some syntactic and semantic properties. This 
is in contrast with Ada [Ada83] where only a syntactic interface for 
generic packages can be required. A requirement has a syntax analogous to 
that of a module. 
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<requirement> = 
"requirement" [ <requirement name> ] ";" 

[ <import clause> ] 
[ <export clause> ] 
[ < sorts part> ] 
[ <operations part> ] 
[ <declarations part> ] 
[ < axioms part> ] 

"end" "requirement" [ <requirement name> ] ";" 

As an example. a scheme for a stack is given in Fig. 3/17. In this simple 
example the claimed requirement is a syntactic interface only. i.e. the 
requirement does not contain any axiom. More complex examples will be 
given later. 

scheme StackScheme [ 
requirement Item; 

export all; 
sort Item; 
operation 

error: -> Item; 
end requirement Item; 

]; 

module Stack; 
import Bool. true. false from Bool; 

all from Item; 
export aU; 
sort Stack; 
operations 

newstack: -> Stack; 
push: Stack * Item -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack - > Item; 

declare s: Stack; it: Item; 
axioms 

isnewstack( newstack ) = true; 
isnewstack( push( s. it) ) = false; 
pop( news tack ) == newstack; 
pop( push( s. it ) ) == s; 
top( news tack ) = error; 
tope push( s. it ) ) = it; 

end module Stack; 
end scheme StackScheme; 

Fig. 3/17 
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An instantiation has the following syntax: 

<instantiation> = 

"instantiate" <scheme name> [ <rename clause> ] ";" 
("with" <requirement name> "as" <module name> [ ("," 

<item name> "as" <item name> )*] ";" 
)* 

"end" "instantiate" [ <scheme name> ] ";" 

<item name> = <sort name> I <operation name> 

After the keyword with a claimed requirement (formal module) is 
bound with a module (actual module). First, the name of the claimed 
requirement is bound with the name of the module. Afterwards, the 
(formal) sorts and operations of the claimed requirement are bound with 
the (actual) sorts and operations of the module. In Fig. 3/18 StackScheme 
is instantiated. 

instantiate StackScheme; 
with Item as Nat, 

Item as Nat, 
error as zero; 

end instantiate StackScheme; 

Fig. 3/18 

For this instantiation the requirement Item is bound with the module 
Nat in the following way: the formal parameter Item is bound with the 
actual sort Nat and the formal parameter error is bound with the actual 
operation zero. The instantiation of Fig. 3/18 is equivalent to Fig. 3/19. 

module Stack; 
import Bool, true, false from Bool; 

Nat, zero from Nat; 
export all; 
sort Stack; 
operations 

news tack: -> Stack; 
push: Stack * Nat -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack -> Nat; 

declare s: Stack; it: Nat; 
axioms 
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isnewstack( news tack ) = true; 
isnewstack( push( s, it ) ) = false; 
pope news tack ) == newstack; 
pope push( s, it ) ) = s; 
tope news tack ) = zero; 
tope push( s, it ) ) = it; 

end module Stack; 

Fig. 3/19 

Chap. 3 

In Fig. 3/20 a scheme for an array is given. Two requirements are 
claimed, one for the indices and one for the attributes of the array. The 
requirement Index serves not only as a syntactic but also as a semantic 
interface, i.e. the requirement contains axioms. The required semantic 
properties of the equality operation are reflexivity, symmetry and 
transitivity. 

scheme ArrayScheme [ 

]; 

requlrement Attribute; 
export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

requirement Index; 
import Bool, true, _and _from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index· Index -> Bool; 
declare i, it. i2, i3: Index; 
axioms 

i = i == true; 
i1 = i2 == i2 = i1; 
( i1 = i2 ) and ( i2 = i3 ) ~ ( i1 = i3 ) true; 

end requirement Index; 

module Array; 
import Bool, true, false, not _from Boo1; 

all from Attribute, Index; 
export all; 
sort Array; 
operations 

empty: -> Array; 
_[ _I _]: Array· Attribute· Index -> Array; 
isundefined: Array· Index -> Bool; 
read: Array· Index -> Attribute; 

declare ar: Array; i, it. i2: Index; at, at1, at2: Attribute; 



www.manaraa.com

Sec. 3.4 Parameterized Specifications 89 

axioms 
not ( il = i2 ) => ad atl iii ][ at2 li2 ] == ad at2 li2 ][ atl / il ]; 
ar [ atl / i ] [ at2 / i ] == ar [ at2 / i ]; 
isundefined( empty, i) == true; 
isundefined( ar [ at / il ], i2 ) == 

if il = i2 . 
then false 
else isundefined( ar, i2 ) 

end if; 
read( empty, i) = error; 
read( ar [ at / i1 ], i2 ) == 

if il = i2 
then at 
else read( ar, i2 ) 

end if; 
end module Array; 

end scheme ArraySeheme; 

Fig. 3120 

In Fig. 3/21 an instantiation of ArrayScheme is given. We assume that 
a module Iden of identifiers, containing the identifier undefined, and a 
module Boo1 have been specified. The requirement Index is bound with the 
module Nat, the requirement Attribute is bound with the module Iden. 
The instantiation makes sense since the requirements are met, i.e. the 
syntactic interfaces are met and the axioms of the requirement Index are 
satisfied by the actual parameters. Indeed, the reflexivity, symmetry and 
transitivity of the operation _ = _: Nat * Nat -> Boo1 can be proved using 
equational reasoning and induction. 

module Nat; 
import Bool, true, false from Bool; 
export all; 
sort Nat; 
operations 

zero: -> Nat; 
suee: Nat -> Nat; 
_ = _: Nat· Nat -> Bool; 

declare n, nJ, n2: Nat; 
axioms 

zero = zero = true; 
zero = suee( n ) = false; 
suecC n ) = zero == false; 
suee( nl ) = suee( n2 ) == nl = n2; 

end module Nat; 

instantiate ArraySeheme; 
with Index as Nat, 

Index as Nat, 
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_= _as _=...,; 
with Attribute as Iden, 

Attribute as Iden, 
error as undefined; 

end instantiate ArrayScheme; 

Fig. 3/21 

Import Restrictions 

Chap. 3 

Anywhere outside a scheme one must not import from the modules of the 
scheme nor from the requirements claimed by the scheme. Also, claimed 
requirements of a scheme must not import from the modules of the 
scheme. 

Before explaining the parameter passing mechanism in more detaiL we 
will define parameter morphisms. 

3.4.1 Parameter Morphisms 

A parameter rrwrpmsm m from the claimed requirements RI , R2, ... , Rr of a 
scheme S to modules MI , M2, ... , Mr consists of two families of mappings 
{ mIs' m2s' ... , mrs} and { mIo' m2o' ... , mro }, with mxs being a mapping 
from all sorts defined in Rx to sorts defined in or imported by Mx, and 
with mxo being a mapping from all operation names defined in Rx to the 
operation names defined in or imported by Mx. such that 

A. the rank of the operations is preserved: 

a. for each nullary operation Si defined in a requirement Rx as 
Si: -> Sil' we have mxoC Si ): -> msC Sij ) with msC Sil ) defined 
as 

• if Sil was defined in a requirement Ry, then msC Sil ) = 

mysC Sil ) 

• otherwise msC Sil ) = Sil 

b. for each nonnullary operation Si defined in a requirement Rx as 
Si: Sil * Si2 * ... * Sik -> Sil' we have mxoC Si ): msC Sil ) * 
msC Si2 ) * ... * msC Sik ) -> msC Sil ) with ms as defined above 

B. the axioms are preserved: for each axiom TI == T2 in a requirement 
Rx the axiom mC TI ) = mC T2 ) is satisfied by module Mx, with 
mC T ) recursively defined as: 
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a. for each nullary operation Sj: -> Sjj we have m( Sj ) = moe Sj ) 

with moe Sj ) defined as 

• if Sj was defined in a requirement Ry ' then moe Sj ) 
myo( Sj ) 

• otherwise moe Sj ) = Sj 

b. for each nonnullary operation Sj: Sjl * Sj2 * ... * Sjk -> Sjj we 
have m( Sj( T1 , T2, ... , Tk ) ) = moe Sj )( m( Tl ), m( T2 ), ... , 
m( Tk )) 

c. for each variable x of sort Sj we have m( x ) = x' with x' being 
of sort ms( Sj ) 

Notice that each claimed requirement corresponds to one module only. 
Parameter morphisms are defined in such a way that the modularity of the 
requirements is preserved. 

3.4.2 Instantiations 

Standard Parameter Passing 

We now come to the problem of parameter passing. The problem of 
parameterized parameter passing, whereby the actual parameters are sorts 
and/or operation names defined in the modules or the claimed 
requirements of a scheme, will be treated in Section 3.4.7. 

Instantiation Constraint 

The parameter binding mechanism, which allows us to replace all 
occurrences of the formal parameters of a scheme (i.e. the sorts and 
operation names defined in the claimed requirements of the scheme) by 
their corresponding actual parameters (i.e. the sorts and operation names 
listed after the keywords as in an instantiation), must be a parameter 
morphism. This is called the instantiation constraint. For instance, in Fig. 
3/21, the binding of the requirements Index and Attribute to respectively 
the modules Nat and Iden, forms a parameter morphism. This morphism 
consists of {{ (Index, Nat)}, {( Attribute, Iden)}} and {{ ( _ = _, 

_ = _) }, { (error, undefined) }}. It preserves the rank of the operations 

_: IndeX' * Index - > Bool: 
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error: -> Attribute; 

since 

_ = _: Nat * Nat -> Bool: 
undefined: -> Iden: 

The axioms are preserved as well since 

declare i', il ', i2" i3': Nat: 
axioms 

i' = i' = true: 
il '=i2' = i2 '=il ': 

( il ' = i2' ) and ( i2' = i3' ) => ( h' = i3') == true: 

can be proved using equational reasoning and induction. 

Equivalent Specification 

Chap. 3 

The result of an instantiation is defined in terms of equivalent nwdules. 
Given a scheme S containing modules SMi and given an instantiation of the 
scheme S, the instantiation is equivalent to the modules SMi' obtained as 
follows. Each module SMi' is derived from SMi by replacing the "all ... " 
and "all except ... " parts in the import and export clauses by explicit lists 
and consecutively replacing all occurrences of formal parameters by the 
actual parameters as indicated by the parameter morphism. 

From now on, a specification may contain modules, schemes and 
instantiations. If all instantiations of a specification are replaced by their 
equivalent modules and the schemes are eliminated, we obtain its 
equivalent specification. The abstract data types defined by a specification 
are the abstract data types defined by its equivalent specification. 

As an illustration, consider the example of the Array in Fig. 3/21. The 
instantiation of Fig. 3/21 is equivalent to the specification of Fig. 3/22. 

module Array; 
import Bool, true, false, not _ from Bool; 

Nat, _ = _ from Nat; 
Iden, undefined from Iden; 

export all; 
sort Array; 
operatioDll 

empty: -> Array; 
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_[ _I _]: Array * Iden * Nat -> Array; 
isundefined: Array * Nat -> Bool; 
read: Array * Nat -> Iden; 
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declare ar: Array; i. ilo i2: Nat; at. at1. at2: Iden; 
axioms 

not ( i1 - i2 ) => ar [ at1 I i1 ] [ at2 I i2 ] = ar [ at2 I i2 ] [ at1 I i1 ]; 
ar [ at1 Ii] [ at2 Ii] = ar [ at2 Ii]; 
isundefined( empty. i ) = true; 
isundefined( ar [ at I i1 ]. i2 ) = 
if i1 = i2 

then false 
else isundefined( ar. i2 ) 

end if; 
read( empty. i) """" undefined; 
read( ar [ at I i1 1. i2 ) """" 

if i1 - i2 
then at 
else read( ar. i2 ) 

end if; 
end module Array; 

Fig. 3/22 

If sorts or operations defined in an instantiation are needed elsewhere 
outside the instantiation. they must be imported from the equivalent 
modules. Assume. e.g .• the operation isundefined that is defined by the 
instantiation of Fig. 3/21. is needed in a module. then the operation 
isundefined must be imported from the equivalent module Array that was 
shown in Fig. 3/22. 

Modules can be interpreted as special cases of schemes: a module is a 
scheme that has no claimed requirements (thus no formal parameters) and 
that is immediately instantiated. 

It is important to notice that instantiating schemes is quite different in 
nature from importing sorts or operations. If schemes are instantiated. 
new abstract data types are defined. But if sorts and operations are 
imported. existing abstract data types are used (shared). 

3.4.3 Requirements and Induction 

It is important to notice that induction (see Section 2.17) must not be used 
to derive new axioms for sorts defined in requirements. Intuitively 
speaking. these sorts are in fact formal parameters that will not necessarily 
be bound by the parameter mechanism with a termalgebra of their 
(formal) operations. 

Take sort Attribute of the requirement Attribute. see Fig. 3/20; we 
could prove by induction that 
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declare at!. atz: Attribute; 
axiom 

at! == atz; 

Chap. 3 

-- 0--

Indeed. we have no induction conclusion and only one induction base 

axiom 
error == error; -- 1--

which can be derived by means of the reflexivity rule of equational 
reasoning. It is clear that such reasoning by induction does not make any 
sense. 

3.4.4 Remarks on Hierarchical Constraints 

A specification is hierarchical if and only if its equivalent specification is 
hierarchical. For instance. the specification of Fig. 3/21 is hierarchical 
because the equivalent specification. which was given in Fig. 3/22. is 
hierarchical. An example of a specification which is not hierarchical is 
shown in Fig. 3/23. where StackScheme is instantiated with Item as Array. 
and ArrayScheme is instantiated with Attribute as Stack. 

instantiate StackScheme; 
with Item as Array. 

Item as Array. 
error as empty; 

end instantiate StackScheme; 

instantiate ArrayScheme; 
with Index as Nat. 

Index as Nat. 
= as_---.J 

with Attribute as Stack. 
Attribute as Stack. 
error as news tack; 

end instantiate; 

Fig. 3123 

Our specification language allows non-hierarchical specifications to be 
built. Although non-hierarchical specifications can be very useful. we 
must keep in mind that we cannot benefit from the additional safety 
obtained by verifying hierarchical constraints. 
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A hierarchical specification (containing modules. schemes and 
instantiations) is said to meet the hierarchical constraints if its equivalent 
specification meets the hierarchical constraints (see Section 3.2) and if no 
scheme may cause violations of the hierarchical constraints for any 
possible instantiation. 

We now give three rules of thumb for detecting schemes that may 
violate the hierarchical constraints for some of their instantiations. In this 
way. a number of pathological cases may be detected before any 
instantiation has come into existence. 

1 
__ Consider the requirements of a scheme as modules. Then. the 

requirements must meet the first hierarchical constraint (no confusion). 

Consider the specification of Fig. 3/24. 

scheme S [ 
requirement R; 

import all from Bool; 

sort X; 
operations 

x:-> X; 
f: X -> Bool; 

axioms 
f( x ) == true; 
f( x) == false; 

end requirement R; 
]; 

end scheme S; 

Fig. 3/24 

If the requirement R is considered as a module. the first hierarchical 
constraint (no confusion) is violated since we can prove by equational 
reasoning that 

axiom 
true == false; 

Although the terms true and false cannot be proved to be equal by 
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equational reasoning in module Bool. they can after the addition of the 
requirement R considered as a module. Clearly. requirement R can never 
be bound by a parameter morphism with an actual module that meets the 
hierarchical constraints. 

Notice that in the formulation of this rule of thumb only the first 
hierarchical constraint is mentioned. not the second one. Indeed. if we 
consider the requirement R of Fig. 3/25 as a module. the second 
hierarchical constraint is not met because. e.g. f( zero) cannot be reduced 
to true or false. However. the hierarchical constraints will not be violated 
at instantiation. 

scheme S [ 
requirement R; 

import Bool from Bool; Nat from Nat; 
operation 

f: Nat -> Bool; 
end requirement R; 

]; 

end scheme X; 

Fig. 3125 

2 
,.. Consider the requirements of a scheme as modules. Then. the 

modules defined in the scheme must meet the hierarchical constraints. 

If we consider in Fig. 3126 the requirement R as a module. the terms f 
and g cannot be proved to be equal by equational reasoning. but after the 
addition of module M they can. Therefore. the first hierarchical constraint 
(no confusion) is violated. 

Indeed. if we instantiate scheme S of Fig. 3/26 by binding the 
requirement R with the module Bool. sort X with Bool. f with true and g 
with false. the equivalent module would violate the first hierarchical 
constraint. 

scheme S [ 
requirement R; 

export all; 
sort X; 
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operations 
f:-> X; 
g:-> X; 

end requirement R; 
]; 

moduieM; 
import X, f, g from R; 

axiom 
f=g; 

end module M; 
end scheme S; 

Fig. 3126 

Parameterized Specifications 97 

Another example is shown in Fig. 3/27. If we consider the requirement 
R as a module, module M violates the second hierarchical constraint (no 
junk), since a new object. denoted by the nullary operation c, of sort X is 
defined and it cannot be proved to be equal to a or b. 

scheme S[ 
requirement R; 

export all; 
sort X; 
operations 

a, b:-> X; 
end requirement R; 

]; 

moduleM; 
import all from R; 
export all; 
operation 

c:-> X; 
end module M; 

end scheme S; 

Fig. 3127 

3 
,.. Select one of the requirements of a scheme. we call it R. Try to add 

axioms to the requirement R in such a way that R considered as a module 
does not violate the first hierarchical constraint (no confusion). Then the 
other requirements (of the scheme) considered as modules and the modules 



www.manaraa.com

98 An Algebraic Specification Language Chap. 3 

of the scheme must not violate the first hierarchical constraint with 
respect to R. This process must be repeated for every requirement. 

As an illustration of this rule of thumb. consider the scheme S in Fig. 
3/28. If we add the axiom 

axiom 
a==b; 

to requirement R. requirement R considered as a module does not violate 
the first hierarchical constraint. However. module M does not meet the 
first hierarchical constraint any more after the addition. 

scheme S [ 
requirement R; 

export all; 
sort X; 
operations 

a. b: -> X; 
end requirement R; 

]; 

module M; 

operation 
f: X -> Bool; 

axioms 
f( a) = true; 
f( b ) == false; 

end module M; 
end scheme S; 

Fig. 3128 

Indeed. if we bind the formal sort X with Nat and both a and b with 
zero. the module equivalent to this instantiation would violate the first 
hierarchical constraint. 

In general. verifying the hierarchical constraints is a very hard job. In 
Chapter 4 a subset of specifications will be considered for which they can 
be verified easily. 
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3.4.5 Renaming and Qualified Names 

If a scheme is instantiated more than once. name conflicts may occur. 
Therefore. it is possible to rename for an instantiation the modules. sorts 
and operations defined in or claimed by the scheme. The renaming 
mechanism is analogous to the renaming in import clauses. In Fig. 3/29 the 
instantiation of Fig. 3/18 is extended with a renaming clause. 

instantiate StackScheme 
rename 

Stack as Numbertable. 
news tack as inittable. 
push as entertable. 
isnewstack as isinittable. 
pop as leavetable. 
top as retrievetable; 

with Item as Nat. 
Item as Nat. 
error as zero; 

end instantiate StackScheme; 

Fig. 3129 

The equivalent module is given in Fig. 3/30. Notice that both the module 
name Stack and the sort name Stack have been renamed to Numbertable. 

module Numbertable; 
import Nat. zero from Nat; 

Bool. true. false from Bool; 
export Numbertable. inittable. entertable. leavetable. retrievetable. isinittable; 
sort Numbertable; 
operations 

inittable: -> Numbertable; 
entertable: Numbertable * Nat -> Numbertable; 
leavetable: Numbertable -> Numbertable; 
retrievetable: Numbertable -> Nat; 
isinittable: Numbertable -> Bool; 

declare s: Numbertable; it: Nat; 
axioms 

isinittable( inittable ) == true; 
isinittable( entertable( s. it) ) == false; 
leavetable( inittable ) == inittable; 
leavetable( entertable( s. it) ) == s; 
retrievetable( inittable) == zero; 
retrievetable( entertable( s. it ) ) == it; 
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end module Numbertable; 

Fig. 3/30 

Renaming makes it possible to define, e.g., a stack of stacks of natural 
numbers, see Fig. 3/31. 

instantiate StackScheme 
rename 

Stack as StackNat, 
newstack as newstackNat, 
push as pushNat, 
isnewstack as isnewstackNat, 
pop as popNat, 
top as topNat; 

with Item as Nat, 
Item as Nat, 
error as zero; 

end instantiate StackScheme; 

instantiate StackScheme 
rename 

Stack as StackStackNat, 
newstack as newstackStackNat, 
push as pushStackNat, 
isnewstack as isnewstackStackNat, 
pop as popStackNat, 
top as topStackNat; 

with Item as StackNat, 
Item as StackNat, 
error as newstackNat; 

end instantiate StackScheme; 

Fig. 3/31 

In general, a rename clause has the following syntax: 

<rename clause> = "rename" 
( <item name> I <element name> ) "as" ("identifier" I <pattern> ) 
( "," 
( <item name> I <element name> ) "as" ("identifier" I <pattern> ) 
)* 

<item name> = <sort name> I <operation name> 

< element name> = 
<module name> I <scheme name> I <requirement name> 
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In the example of Fig. 3/32 sorts and operation names are qualified 
with the module (or requirement) name they are imported from in order to 
avoid name conflicts. 

module Victim; 
import Iden from Iden; 

Nat from Nat; 

export all; 

operations 
name. street. village: - > Iden; 
number. zip: -> Nat; 

end module Victim; 

module Criminal; 
import Iden from Iden; 

Nat from Nat; 

export all; 

operations 
name. street. village: - > Iden; 
number. zip: -> Nat; 

end module Criminal; 

module Crime; 
import all from Victim. Criminal; 
••• Victim. name ••• 
• • • Criminal.name ••• 

end module Crime; 

Fig. 3/32 

3.4.6 Partial Instantiations 

Consider a scheme S with requirements R X1 ' •••• Rxp. RXp+l' •..• R xr • If none 
of the requirements RXp+l' •••• RXr is directly nor indirectly imported by the 
requirements R X1 ' ••.• Rxp' a partial instantiation is possible. A partial 
instantiation is an instantiation in which the formal parameters of the 
requirements R X1 ' ••• , Rxp only. are replaced by the actual parameters as 
explained by the partial parameter morphism. A partial parameter 
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morphism is a parameter morphism from part of the requirements of a 
scheme. preserving the rank of the operations and preserving the axioms. 
The result of a partial instantiation is a new scheme. Therefore. a partial 
instantiation is only allowed on places where schemes are allowed. Partial 
instantiations are very useful in software design. since they enable the 
construction of new schemes from existing ones. 

The ArrayScheme of Fig. 3/20 is partially instantiated in Fig. 3/33 by 
binding the requirement Index to the module Nat. 

instantiate ArrayScheme rename ArrayScheme as NatArrayScheme; 
with Index as Nat. 

Index as Nat. 
__ as_--1 

end instantiate; 

Fig. 3/33 

The resulting scheme is equivalent to Fig. 3/34. 

scheme NatArrayScheme [ 
requirement Attribute; 

export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

]; 

module Array; 
import Bool. true. false. not _ from Bool; 

all from Attribute; Nat, _ = _ from Nat; 
export all; 
sort Array; 
operations 

empty: -> Array; 
_ [ _ / _]: Array * Attribute * Nat - > Array; 
isundefined: Array * Nat -> Bool; 
read: Array * Nat -> Attribute; 

declare ar: Array; i. ilo i2: Nat; at. atlo at2: Attribute; 
axioms 

not ( i1 = i2 ) ~ ar[ at1 li1 ][ at2 li2 ] == ar[ at2 li2 ][ atl / i1 ]; 

ar [ at1 / i ] [ at2 / i ] == ar [ at2 / i ]; 
isundefined( empty. i) = true; 
isundefined( ar [ at / i1 ]. i2 ) == 

if i1 = i2 



www.manaraa.com

Sec. 3.4 

then false 
else isundefined( ar, i2 ) 

end if; 
read( empty, i) == error; 
read( ar [ at / i1 ], i2 ) == 

if i1 = i2 
then at 
else read( ar, i2 ) 

end if; 
end module Array; 

end scheme NatArrayScheme; 

Fig. 3/34 
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3.4.7 Parameterized Parameter Passing 

This section treats the problem of parameterized parameter passing, with 
the actual parameters being sorts and/or operation names defined in the 
modules or the claimed requirements of a scheme. 

We defined a parameter morphism as two families of mappings from 
the claimed requirements R1 • R2 , •••• Rr of a scheme S to modules M1 • M2 • 

...• Mr. If a scheme S is instantiated within another scheme S'. each 
requirement Ry ' of S' may be used as a module Mx for the parameter 
morphism in the instantiation of S. 

As an example we want to insert the scheme ArrayScheme (with Index 
and Attribute as requirements). which was defined in Fig. 3/20. into the 
scheme StackScheme (with Item as requirement). which was defined in Fig. 
3/17. resulting in the new scheme StackArrayScheme (with Index and 
Attribute as requirements). Of course. the meaning of the reSUlting scheme 
depends on the parameter passing mechanism between the two schemes. 
The skeletons of the schemes StackScheme and ArrayScheme and the 
resulting scheme StackArrayScheme are given below. 

scheme StackScheme [ 
requirement Item; 

export all; 
sort Item; 
operation 

error: -> Item; 
end requirement Item; 

]; 

module Stack; 
• •• -- see Fig. 3/17 

end module Stack; 
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end scheme StackScheme; 

scheme ArrayScheme [ 

]; 

requirement Attribute; 
export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

requirement Index; 
import Bool, true, _ and _ from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index * Index -> Bool; 
declare i, it. i2, i3: Index; 
axioms 

i = i == true; 
i1 = i2 == i2 = i1 ; 

( i1 = i2 ) and ( i2 = i3 ) :¢> ( i1 = i3 ) true; 
end requirement Index; 

module Array; 
• •• -- see Fig. 3122 

end module; 
end scheme ArrayScheme; 

scheme StackArrayScheme [ 

]; 

requirement Attribute; 
export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

requirement Index; 
import Bool, true, _ and _ from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index * Index -> Bool; 
declare i, it. i2, i3: Index; 
axioms 

i=i = true; 
i1 = i2 = i2 = il; 
( i1 = i2 ) and ( i2 = i3 ) :¢> ( i1 = i3 ) true; 

end requirement Index; 

instantiate ArrayScheme; 
with Index as Index, 

Index as Index, 
__ as_---1 

Chap. 3 
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with Attribute as Attribute, 
Attribute as Attribute, 
error as error; 

end instantiate ArrayScheme; 

instan tia te StackScheme; 
with Item as Array, 

Item as Array, 
error as empty; 

end instantiate StackScheme; 
end scheme StackArrayScheme; 

Fig. 3135 
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Notice that the morphism of the instantiation of ArrayScheme maps the 
requirements Index and Attribute of ArrayScheme to the requirements 
Index and Attribute of StackArrayScheme. 
The equivalent scheme of StackArrayScheme is given in Fig. 3/36. 

scheme StackArrayScheme [ 

]; 

requirement Attribute; 
export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

requirement Index; 
import Bool, true, _ and _ from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index * Index -> Bool; 
declare i, it. i2, i3: Index; 
axioms 

i = i == true; 
it = i2 = i2 = it; 
( it = i2 ) and ( i2 = i3 ) => ( it = i3 ) true; 

end requirement Index; 

module Array; 
import Bool, true, false, not _ from Bool; 

all from Attribute, Index; 
export all; 
sort Array; 
operations 

empty: -> Array; 
_[ _I _]: Array * Attribute * Index -> Array; 
isundefined: Array * Index -> Bool; 
read: Array * Index -> Attribute; 
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declare ar: Array; i, il> i2: Index; at: Attribute; 
axioms 

not ( il = i2 ) ~ ar [ atl / il ] [ at2 / i2 ] == ar [ at2 / i2 ] [ atl / il ]; 
ar [ atl / i ] [ at2 / i ] == ar [ at2 / i ]; 
isundefined( empty, i) == true; 
isundefined( ar [ at / il ], i2 ) == 

if il = i2 
then false 
else isundefined( ar, i2 ) 

end if; 
read( empty, i) == error; 
read( ar [ at / il ], i2 ) == 

if il = i2 
then at 
else read( ar, i2 ) 

end if; 
end module Array; 

module Stack; 
import Array, empty from Array; 

Bool, true, false from Bool; 
export all; 
sort Stack; 
operations 

newstack: -> Stack; 
push: Stack· Array -> Stack; 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack - > Array; 

declare s: Stack; a: Array; 
axioms 

isnewstack( news tack ) == true; 
isnewstack( push( s, a ) ) == false; 
pop( news tack ) == news tack; 
pope push( s, a) ) == s; 
top( news tack ) = empty; 
top( push( s, a) ) = a; 

end module Stack; 
end scheme StackArrayScheme; 

Fig. 3/36 

StackArrayScheme has been instantiated in Fig. 3/37. 

instan tia te StackArra yScheme; 
with Index as Nat, 

Index as Nat, 
= as_--> 

with Attribute as Iden, 
Attribute as Iden, 
error as undefined; 

Chap. 3 
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end instantiate StackArrayScheme; 

Fig. 3/37 

Instead of combining the two schemes into a new scheme and then 
instantiating it. we can also first instantiate ArrayScheme and then 
instantiate StackScheme with its result. This has been done in Fig. 3/38. 

instantiate ArrayScheme; 
with Index as Nat. 

Index as Nat. 
= as_=...; 

with Attribute as Iden, 
Attribute as Iden, 
error as undefined; 

end instantiate ArrayScheme; 

instantiate StackScheme; 
with Item as Array, 

Item as Array, 
error as empty; 

end instantiate StackScheme; 

Fig. 3/38 

Both approaches yield the same results. Although the composition of 
schemes is a parameterized composition (because it depends on the 
parameter morphisms). it makes sense to speak of a composition. Actually 
the composition of schemes behaves like the usual composition of functions 
where we have associativity. i.e. f 0 (g 0 h) = (f 0 g) 0 h. and compatibility 
with evaluation. i.e. (f 0 g) (x) = f( g(x) ) [Ehrig84, Ehrig8S]. 

3.4.8 Parameterizing Requirements 

Analogous to the parameterization of a group of modules. a group of 
requirements can be parameterized in exactly the same way. An example 
is shown in Fig. 3/39. 

scheme SomeOperationRequirementScheme [ 
requirement Item; 

export all; 
sort X; 
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end requirement Item; 
]; 
requirement SomeOperation; 

import X from Item; 
export error; 
operation 

error: -> X; 
end requirement SomeOperation; 

end scheme SomeOperationRequirementScheme; 

scheme Y[ 

]; 

requirement Objects; 
export Things; 
sort Things; 

end requirement Objects; 

instantiate SomeOperationRequirementScheme; 
with Item as Objects, 

Xas Things; 
end instantiate; 

end scheme Y; 

Fig. 3/39 

Chap. 3 

In the given example the scheme SomeOperationRequirementScheme has 
been parameterized by the requirement Item. In scheme Y the scheme 
SomeOperationRequirementScheme is instantiated with requirement 
Objects. The result of the instantiation is a requirement SomeOperation 
where a nullary operation is requested. In Fig. 3/40 an equivalent 
specification is given. 

scheme Y [ 
requirement Objects; 

export Things; 
sort Things; 

end requirement Objects; 

req uiremen t SomeOpera tion; 
import Things from Objects; 
export error; 
operation 

error: - > Things; 
end requirement SomeOperation; 

]; 

end scheme Y; 

Fig. 3/40 
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Scheme SomeOperationRequirementScheme of Fig. 3/39 may also be 
instantiated as is shown in Fig. 3/41, where the requirement Item is bound 
with a module. 

scheme Z[ 
instan tia te SomeOpera tionRequiremen tScheme; 

with Item as Nat. 
Xas Nat; 

end instantiate; 
]; 

end scheme Z; 

Fig. 3/41 

Fig. 3/41 is equivalent to Fig. 3/42. 

scheme Z [ 
req uiremen t SomeOpera tion; 

import Nat from Nat; 
export error; 
operation 

error: -> Nat; 
end requirement SomeOperation; 

]; 

end scheme Z; 

Fig. 3/42 

Using schemes of requirements. Fig. 3/35 can be rewritten as in Fig. 3/43. 

scheme ItemRequirementScheme; 
requirement Item; 

export all; 
sort Item; 
operation 

error: -> Item; 
end requirement Item; 

end scheme ItemRequirementScheme; 

scheme StackScheme [instantiate ItemRequirementScheme; end instantiate; ]; 
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module Stack; 
. .• -- see Fig. 3/17 

end module Stack; 
end scheme StackScheme; 

scheme A ttributeRequirementScheme; 
requirement Attribute; 

export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

end scheme A ttributeRequirementScheme; 

scheme IndexRequirementScheme; 
requirement Index; 

import Boo!, true, _ and _ from Boo!; 
export all; 
sort Index; 
operation 

_ =' _: Index * Index - > Boo!; 
declare i, iI, i2, i3: Index; 
axioms 

i = i == true; 
il = i2 == i2 = il ; 

( il = i2 ) and ( i2 = i3 ) ~ ( il = i3 ) true; 
end requirement Index; 

end scheme IndexRequirementScheme; 

scheme ArrayScheme [ 

]; 

instantiate AttributeRequirementScheme; end instantiate; 
instantiate IndexRequirementScheme; end instantiate; ] 

module Array; 
• .• -- see Fig. 3/22 

end module; 
end scheme ArrayScheme; 

scheme StackArrayScheme [ 

]; 

instantiate AttributeRequirementScheme; end instantiate; 
instantiate IndexRequirementScheme; end instantiate; ]; 

instantiate ArrayScheme; 
wi th Index as Index, 

Index as Index, 
__ a8_='-'; 

with Attribute as Attribute, 
Attribute as Attribute, 
error as error; 

end instantiate ArrayScheme; 

Chap. 3 
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instantiate StackScheme; 
with Item as Array, 

Item as Array, 
error as empty; 

end instantiate StackScheme; 
end scheme StackArrayScheme; 

Fig. 3/43 
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In this section we have shown that the idea of parameterization as it has 
been applied to groups of modules can be applied to groups of requirements 
as well, resulting in a very orthogonal language definition. Even a mixed 
group of modules and requirements can be parameterized. In Section 4.10 
we will discuss where such a mixed group of requirements and modules 
does make sense. 

3.5 Clusters 

As mentioned in Section 3.1.1. a specification forms a directed graph. 
Making this graph acyclic is not always possible because of mutual 
recursivities between the abstract data types. Collecting the modules of 
the specification into one big module would reduce the readability. An 
example of recursivity can be found in the algebraic specification of Karel 
The Robot [Lewi85b]. A selected part is given in Fig. 3/44. The module 
Commands defines the different commands of the robot. which are 
executed in a certain environment. The module Environment makes use of. 
among others, a library of newly defined commands. In module Library a 
library is defined as a mapping from identifiers to commands. The import 
of the modules Commands. Environment and Library is recursively 
defined. 

module Position; 
import ••. ; 
export Pos, forward to Commands; ..• 
sort Pos; 
operations 

makePosition: •.• - > Pos; 
forward: Pos - > Pos; 

end module Position; 

module Library; 
import Com from Commands; 
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Iden from Identifiers; 
export Lib to Environment, Commands; 
sort Lib; 
operations 

newlib: -> Lib; 
addlib: Lib * Iden * Com - > Lib; 

end module Library; 

module Environment; 
import Lib from Library; ••• 
export Env, makeEnv to Commands; ••• 
sort Env; 
operations 

makeEnv: ••• * Lib * ••• -> Env; 

end module Environment; 

module Commands; 
import Env, makeEnv from Environment; 

Pos, forward from Position; 
Lib from Library; ••• 

export Com to Library; ••• 
sort Com; 
operations 

move, turnleft: - > Com; 

C: Com· Env -> Env; 
declare pes: Pos; lib: Lib; 
axioms 

C( move, makeEnv( pos, ••• , lib, ••• ) ) == 

•.• makeEnv( forward( pos ), ••• , lib, •.• ) ••• ; 
end module Commands; 

Fig. 3/44 
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The recursive dependencies between the modules Commands, 
Environment and Library are inherent in the specified problem. The cyclic 
graph of modules can be transformed into a hierarchy of modules by 
grouping the mutually recursive modules into one supermodule, called 
cluster. A cluster is a simple packing of individual modules involved in a 
loop in a directed graph. A cluster has the following syntax: 

<cluster> = 

"cluster" [ <cluster name> ] ";" 
( <module> I <instantiation> I <requirement> )+ 

"end" "cluster" [ <cluster name> ] ";" 

An example of a cluster is shown in Fig. 3/45. 
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module Position; 
import ••• ; 
export Pos, forward to Commands; ••• 
sort Pos; 
operations 

makePosition: ••• - > Pos; 
forward: Pos -> Pos; 

end module Position; 

cluster Robot; 

module Library; 
import Com from Commands; 

Iden from Identifiers; 
export Lib to Environment, Commands; 
sort Lib; 
operations 

new lib: - > Lib; 
add lib: Lib * Iden • Com - > Lib; 

end module Library; 

module Environment; 
import Lib from Library; ••• 
export Env, makeEnv to Commands; •.• 
sort Env; 
operations 

makeEnv: ••• * Lib * •.• -> Env; 

end module Environment; 

module Commands; 
import Env, makeEnv from Environment; 

Pos, forward from Position; 
Lib from Library; ... 

export Com to Library; ••• 
sort Com; 
operations 

move, turnleft: - > Com; 

C: Com * Env -> Env; 
declare pos: Pos; lib: Lib; 
axioms 

C( move, makeEnv( pos, •• " lib, ••• ) ) = 
••• makeEnv( forward( pos), . ", lib, ••• ) ••• ; 

end module Commands; 

end cluster Robot; 

Fig. 3/45 

Clusters 113 
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3.6 Bibliographic Notes 

Modularity and Hierarchical Specifications 

Since the early beginning of algebraic specifications, most abstract data 
types described in literature have been of a hierarchical nature. In 
[Goguen78] a classification of techniques is given. 

• An abstract data type that does not use other abstract data types and is 
defined without axioms, is called a fundamental type. 

• If a new module that imposes further axioms on an already existing 
abstract data type is added, the resulting type is called the quotient of 
the old one. E.g., set can be defined as a quotient of bag. Notice that 
this violates our first hierarchical constraint. 

• If abstract data types are enriched with new operations meeting our 
hierarchical constraints, but no new sorts are defined, it is called an 
enrichment . 

• If both new operations and new sorts meeting our hierarchical 
constraints are defined, it is called an extension. 

• A new type can also be defined as n-tuples of existing abstract data 
types. This is called tupling of types. 

Using the terminology of [Goguen78], if the hierarchical constraints are 
met, the existing abstract data types are said to be protected. 

If a hierarchy meets our first hierarchical constraint, it is called 
consistent in [Ehrig85], whereas a hierarchy that meets our second 
hierarchical constraint is called complete. Generally, the problem of 
whether the hierarchical constraints are met is undecidable [Ehrig85]. 

[Futatsugi85] calls a module protecting if it meets our hierarchical 
constraints, it is called extending if it meets our first hierarchical 
constraint, and it is called using otherwise. 

In [Nakajima80] an algebraic specification language, called iota, is 
proposed. In iota a program consists of a tree-like hierarchy of modular 
components. Our modules and schemes correspond to their type modules 
and procedure modules, our requirements correspond to their sype modules. 

In [Bergstra85] a graphical notation for hierarchies of modules and 
schemes, called structured diagrams, is proposed. Each module (scheme) is 
represented by a rectangular box. The name of each module (scheme) is 
shown at the bottom of its box. All modules imported by a module 
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(scheme) X are represented by structure diagrams inside the box 
representing X. All requirements of a scheme are represented by ellipses 
carrying their names. For instance, the structure diagram of the scheme 
Stack of Fig. 3/17 is given in Fig. 3/46. 

Stack 
Fig. 3/46 

An instantiation is represented by lines joining the requirements of the 
scheme to the modules in which the corresponding actual parameters are 
defined. For instance, the module StackNat of Fig. 3/18 is defined by 
binding the requirement Item to the module Nat. This is shown in Fig. 
3/47. 

Stack 

StackNat 

Fig. 3/47 

Our import and export clauses were based on the import clauses of 
Modula-2 [Wirth82]. 

The need for a cluster structure has appeared in [Lewi85b]. The 
recursive nature of sorts and operations makes the use of a hierarchy of 
modules impossible there. 
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Notational Extensions 

In most articles ifthenelse constructs are used as built-in operations. 
Conditional axioms are used in [Laut83] and in OBJ [Goguen84c, 
Futatsugi85]. The mixfix notation was first introduced for algebraic 
specifications in the iota language [Nakajima80] and the OB] language 
[Goguen82, Goguen84c, Futatsugi85]. Case and let constructs are 
frequently used in functional programming languages. 

Parameterized Specifications 

Although the first publications on algebraic specifications already used 
parameterized specifications, theoretical studies originally did not treat 
generics [Goguen78, Guttag78a]. The first fundamental contributions to 
the theory of parameterized specifications were [Ehrig78, Thatcher78 , 
Bursta1l80]. A standard work is [Ehrig85], where the semantics of a 
parameterized specification are defined as a free functor, which is a 
fundamental concept in category theory [Hilton74, Goldblatt79]. In 
[Ehrig84, Ehrig85] it is proved that 

• the actual parameters are protected if parameter morphisms are used 

• the composition of schemes is associative and compatible with 
evaluation. 

In [Ganzinger81] it is also shown that most of the results concerning 
parameter passing treated with initial algebras can be transmitted in the 
framework of final algebras. 

Our ideas about (parameter) morphisms, standard parameter passing 
and parameterized parameter passing are based on [Ehrig84]. Notice that 
we did not modify the mathematical foundations defined in Chapter 2. 
Actually, we treat parameterization as a kind of macro-substitution. 

ACT ONE 

ACT ONE (Algebraic Specification Techniques for Correct and Trusty 
Software Systems) is an algebraic specification language developed at the 
Technical University in Berlin by Hartmut Ehrig and Bernd Mahr 
[Ehrig85]. An example is given in Fig. 3/48. 

In ACT ONE the concept of combination is useful to combine 
specifications or to add sorts or operations to a given specification such that 
a hierarchy is built. It is analogous to our import clause mechanism of 
Section 3.1.1. In Fig. 3/49 the specifications of nat and bool are extended 
with the specification of the stack. 
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def nat is 
sorts nat 
opns 

0: -> nat 
SUCC: nat -> nat 
ADD: nat nat -> nat 

eqns of sort nat 
for all n, m in nat: 
ADD( n, O)=n 
ADD( n, SUCC( m ) ) = SUCC( ADD( n, m ) ) 

end of def 

Fig. 3/48 

def stack is nat and boo1 
sorts stack 
opns 

EMPTY: -> stack 
PUSH: stack nat -> stack 
ISEMPTY: stack -> boo1 
TOP: stack -> nat 
POP: stack - > stack 

eqns of sort boo1 
ISEMPTY( EMPTY) = TRUE 

end def 

Fig. 3149 
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In ACT ONE a scheme is called a parameterized specification and an 
instantiation is called an actualization. An example of a parameterized 
specification is shown in Fig. 3/50. 

def pars tack is 
formal sorts data 
formal opns error: -> data 
sorts stack 
opns 

EMPTY: -> parstack 

end of def 

Fig. 3150 
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OBJ 

In the specification language OBJ2 [Goguen84c, Futatsugi85] an analogous 
parameterization mechanism is provided. Requirements are called theories 
and morphisms are called views. If no ambiguity rises, default views are 
possible by only indicating to which module a theory is mapped. Also 
parameterized theories may be used. Parameterizing a theory is in fact 
claiming another requirement and importing from this requirement. OBJ2 
differs from our algebraic specification language in that in OBJ2 only one 
module can be parameterized, whereas our schemes may contain several 
modules. 

The OBJ family of algebraic specification languages has been developed 
by the group of Goguen. It was originally based on the specification 
language Clear [BurstaIl77]. The oldest member of this family is OBJO, 
later called OBJT [Goguen79]. OBJ1 was a significant improvement by 
including associative-commutative rewriting [Goguen83]. The main 
characteristic of OBJ2 is the concept of subsorts. At the moment, OBJ3 is 
being developed [Goguen87c]. OBJ2 has also an object-oriented version, 
called FOOPS [Goguen86]. A combination of equational logic of OBJ with 
the Horn clause logic of Prolog resulted in Eqlog [Goguen 84d]. 

A very typical feature of OBJ2 is the concept of subsorts [Futatsugi85, 
Goguen85, Goguen87b]. One sort of data is often contained in another, e.g., 
the natural numbers are contained in the integers. Then the sort Nat is a 
subsort of Int, written as Nat < Int. Moreover, an operation may restrict 
to subsorts of its rank and still be "the same" operation [Futatsugi85]. For 
example, the addition operation _ + _: Nat Nat -> Nat is a restriction of 

+ _: Int Int - > Int. 
The following specification introduces the sort Int of integers with the 

subsort Nat of natural numbers. Furthermore, the non-zero natural 
numbers are a subsort of the natural numbers and a subsort of the non
zero integers which in turn are a subsort of the integers, see Fig. 3/51. 

obj INT is 
sorts NzNat Nat Nzlnt Int. 
subsorts NzNat < Nat < Int. 
subsorts NzNat < Nzlnt < Int. 
opO:-> Nat. 
op s_: Nat -> NzNat. 
op -_: Nat -> Int. 
op -_: NzNat -> Nzlnt. 
op _+ _: Int Int -> Int [assoc comm id: 0] 
op _* _ : Int Int - > Int [assoc comm] 
vars U V: Nat. 
var X: Int. 
vars A B : NzNat • 
eq:-O=O. 



www.manaraa.com

Sec. 3.6 

eq:X+O=X. 
eq : (5 U) + (5 V) = s s (U + V) • 
eq : (- s U) + (s V) = (- U) + V . 
eq : (- s u) + (- s V) = - s s (U + V) • 
eq:X*O=O. 
eq:X*sV=X*V+X. 
eq : X * - s V = - (X * V + X) . 

jbo 

Fig. 3/51 
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An object (abbreviated obj) is a module containing executable code 
[Futatsugi85]. This object is called INT. The nullary operation 0 denotes a 
natural number. The result of the successor operation s_ is a non-zero 
natural number. The unary operation -_returns a (non-zero) integer if its 
argument is a (non-zero) natural number. Finally, the addition and 
multiplication operations are declared. The attribute assoc indicates that 
an operation is associative, and id: 0 indicates that it has 0 as an identity. 
After the keywords var and vars variables are declared. Axioms are given 
after the keywords eq. 

Although the logic of subsorts can be reduced to standard equational 
logic (i.e. based on many-sorted initial algebras) using coercing functions 
[Goguen85, Futatsugi851. a new mathematical foundation, called order
sorted algebra approach, is proposed in [Goguen85, Futatsugi85, 
Goguen87b]. 
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4. Constructive Specifications 
"Abstraction and specification must be the linchpins 

of any effective approach to programming." 
Barbara Liskov and John Guttag 

Roughly speaking. constructive specifications are specifications that can 
always be directly implemented. enabling rapid proto typing. An 
important benefit from making constructive specifications is that it enables 
software designers and customers to get user feedback and hands-on 
experience with the system before the implementation gets started. In this 
way. design errors due to misunderstandings between designers and 
customers. as well as lack of understanding of service mechanisms can be 
detected and corrected at an early stage in the software life cycle. With 
constructive specifications. the boundaries between specification and 
implementation are not very sharp. Both may be considered as programs. 
but the former is of a higher level of abstraction (Le. less implementation 
details) than the latter. So. making constructive specifications is 
comparable to writing programs. As for programming. not only insight 
but also discipline and style are necessary. Here. the style consists of 
dividing the operations into two groups. one for data abstractions 
(constructors) and one for procedural abstraction (non-constructor 
operations). The constructors provide us with a system of canonical 
forms. The axioms are considered as a left-to-right term rewriting system 
that reduces terms containing non-constructor operation names to terms 
built up of constructor names only. By introducing constraints of 
uniqueness and completeness. which can be checked mechanically. the 
chance of writing erroneous specifications can be reduced considerably. In 
this way. software correctness can be enhanced up to a large extent. 

Constructive specifications have the advantage over non-constructive 
ones that they always give rise to rapid prototyping. However. non
constructive specifications often are of a higher level of abstraction than 
their constructive versions and. therefore. are more appropriate for system 
documentation purposes. It is our personal conviction that in a first step 
one has to try to construct a specification without considering any 
constructivity constraint. If we obtain a specification that is non
constructive. we build a constructive version of it in a second step. Some 
of the axioms found in the first step are then added to the constructive 
specification as provable theorems. representing valuable documentation of 



www.manaraa.com

Sec. 4.0 121 

the system properties. As already mentioned, non-constructive 
specifications do not always form a left-to-right term rewriting system. 
However, they are very valuable in the early stages of the software life 
cycle when we only have some ideas about operation properties but are yet 
unable to describe them constructively. We must keep in mind that we 
probably aim at an implementation where we must eventually give 
algorithms. So eventually non-constructive specifications have to be 
replaced step by step by constructive ones. 

Furthermore, constructor axioms are considered. A limited use of 
constructor axioms gives rise to semi-constructive specifications. Although 
constructor axioms cannot always be considered as pure left-to-right term 
rewriting rules, semi-constructive specifications can be directly 
implemented, enabling rapid proto typing. 

One of the advantages of formal specification languages over traditional 
programming languages is that semantic properties On the form of 
theorems) can be required from the actual parameters when parameterized 
specifications are used. In this chapter a three-step method to build such 
semantic interfaces is presented. The method is illustrated by means of an 
abstract data type defining geometric functions. 

4.1 Simple Example 

In this section we introduce the notions of constructors, non-constructor 
operations and constructivity by means of a simple example. The exact 
definitions will be given in Section 4.2. 

Consider the specification of stacks in Fig. 4/1. It differs from the 
specification given in Fig. 3/17 in that the operations of module Stack are 
divided into two groups: constructors and non-constructor operations. In 
Fig. 4/1 the constructors are newstack and push whereas the non
constructor operations are isnewstack, pop and top. With the constructors 
we can generate all the objects of the abstract data type Stack and each 
object of the abstract data type can be denoted by just one constant term 
built up of newstack and push only. Non-constructor operations describe 
the functional behaviour of the objects of the abstract data type Stack. 
They are defined in terms of the constructors. 

scheme StackScheme [ 
requirement Item; 

export all to Stack; 
sort Item; 
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operation 
error: -> Item; 

end requirement Item; 
]; 

module Stack; 
import Bool, true, false from Bool; Item, error from Item; 
export all; 
sort Stack; 
constructors 

news tack: - > Stack; 
push: Stack· Item -> Stack; 

operations 
isnewstack: Stack -> Bool; 
pop: Stack - > Stack; 
top: Stack -> Item; 

declare s: Stack; it: Item; 
operation axioms 

isnewstack( newstack ) = true; 
isnewstack( push( s, it ) ) == false; 
pope newstack ) = newstack; 
pope push( s, it ) ) == s; 
tope news tack ) == error; 
tope push( s, it ) ) == it; 

end module Stack; 
end scheme StackScheme; 

Fig. 4/1 

Chap. 4 

The operation axioms of Stack can be seen as rules of a left-to-right 
term rewriting system that reduces variable-free terms containing non
constructor operation names to canonical forms built up of constructor 
names only. As an example, if StackScheme is instantiated by binding the 
requirement Item with a module defining natural numbers, the term 

pope push( pope push( push( newstack, 5 ), 7 ) ), 9 ) ) 

can be reduced to 

push( newstack, 5 ) 

which is a canonical form. Notice that from now on we write, e.g., 5 
instead of succ( succ( succ( succ( succ( zero) ) ) ) ). 
Another example is the term 

isnewstack( pope push( pope push( newstack, 5) ), 7 ) ) ) 

which is reduced to 

true 
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By using the operation axioms as left-to-right term rewriting rules. 
each non-constructor operation applied to the appropriate arguments can be 
symbolically executed yielding the answer in a canonical form. As we will 
see in Section 4.2. in order to use specifications as left-to-right term 
rewriting systems. the specification has to meet a number of constraints. 
called constructivity constraints. Constructive specifications are important 
for rapid prototyping. 

Notice that from now on we use the term operation axiom(s) and the 
keyword operation axiom(s). in order to distinguish this kind of axioms 
from constructor axioms. which will be defined in Section 4.6. 

4.2 Constructive Specifications 

We recall that in our terminology a specification consists of modules. 
instantiations and schemes (schemes consist of requirements. modules and 
instantiations). whereas an equivalent specification only consists of 
modules. see Section 3.4.2. 

Constructor and Non-Constructor Operations 

The operations are divided into two groups: constructors and non
constructor operations. Constructors are operations that are chosen so that 
every congruence class of the initial algebra contains a constant term built 
up of constructor names only. The constructors provide us with a system 
of canonical forms. Distinguishing between constructors and non
constructor operations is in fact distinguishing between data abstraction 
and procedural abstraction. Intuitively speaking. constructors are 
operations that generate objects of the abstract data type whereas non
constructor operations. called operations for short. rather describe the 
functional behaviour of the objects. 

Constructiveness Constraints 

A specification is said to meet the constructiveness constraints if for each 
module of the specification the following conditions hold: 

1. The left-hand side of each axiom starts with a non-constructor 
operation name that is defined in the same module. and all proper 
subterms of the left-hand side are built up of variables and 
constructor names only. Furthermore. the choices of case arms are 
built up of variables and constructor names only. 
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2. A variable occurs at most once at the left-hand side of an axiom or in 
the choice of a case arm. 

3. Only variables that are used at the left-hand side of an axiom, may 
be used at the right-hand side of the axiom. There are two 
exceptions: the variable introduced by a let construct may also be 
used in its let expression, and the variables introduced by the choice 
of a case arm may also be used in the corresponding expression. 

4. Conditional axioms (see Section 3.3.3) are not allowed. But ifthenelse 
constructs are available as explained in Section 3.3.1. 

5. All constructors of a sort must be defined in the module defining the 
sort. 

These constraints can easily be checked in a mechanical way 
[Goovaerts84, Van Puymbroeck84]. 

Uniqueness and Completeness Constraints 

Consider a specification within which a non-constructor operation is 
defined. The specification is said to meet the uniqueness and completeness 
constraints with respect to that non-constructor operation, if the left-hand 
sides of the axioms for the non-constructor operation cover its domain 
exactly once. 

A specification is said to meet the uniqueness and completeness 
constraints with respect to a case construct, if the choices of the case arms 
of the case construct cover its domain exactly once. 

A specification is said to meet the uniqueness and completeness 
constraints, if the specification (e.g., Fig. 4/1) meets these constraints with 
respect to each non-constructor operation and to each case construct. Also 
the uniqueness and completeness property can easily be checked in a 
mechanical way [Van Puymbroeck84]. 

Terminating Specifications 

A specification (consisting of modules, schemes and instantiations) is 
terminating if the equivalent specification is terminating and if no scheme 
may be responsible for producing non-terminating specifications for any 
possible correct instantiation. An equivalent specification is terminating if 
no variable-free term can be reduced infinitely using the axioms as left
to-right term rewriting rules. 
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We now give a rule of thumb for detecting schemes that may be 
responsible for producing non-terminating specifications for some of their 
instan tia tions . 

.. Given a scheme consisting of requirements and modules. We apply 
the definition of termination to these modules. considering each variable of 
a sort defined in one of the requirements as a constructor name of that 
sort. 

In general. the termination of the reduction process cannot be checked 
mechanically. unless if. e.g .• only structural recursion [Boyer79. Bevers85. 
Bevers87] is used. The specification of Fig. 4/1 uses no recursion at all. 
and it is easy to check that the reduction process always terminates. 

Constructive Specifications 

A specification is constructive if the constructiveness. uniqueness and 
completeness constraints are met and if it is terminating. This property is 
called constructivity. 

Notice that every congruence class of the initial algebra of a 
constructive specification contains just one constant term built up of 
constructor names only. A very interesting property is that the 
hierarchical constraints in constructive specifications are automatically 
met. 

4.3 Theorems 

Axioms of a non-constructive specification can be considered as theorems 
for the corresponding constructive specification. Strictly speaking. 
theorems in modules are redundant information with respect to the 
axioms. but they play an important role in the documentation to better 
understand specifications and to gain confidence that the specifications 
express what we have in mind. Theorems can be proved using equational 
reasoning and induction. see Chapter 2. 

In Fig. 3/8 a non-constructive specification for the abstract data type of 
boolean values was given. In Fig. 4/2 we give a constructive specification 
of this data type. The remaining axioms of Fig. 3/8 are added as theorems. 
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module Bool 
export all; 
sort Bool; 
constructors 

true, false: -> Bool; 
operations 

not _: Bool-> Bool; 
_and _: Bool· Bool-> Bool; 
_ or _: Bool • Bool-> Bool; 
_ => _: Bool • Bool-> Bool; 
_ <= _: Bool· Bool-> Bool; 
_ <=> _: Bool· Bool-> Bool; 

declare b, bi> b2 , b3 : Bool; 
operation axioms 

not true = false; not false == true; 
b and true == b; b and false = false; 
b or true = true; b or false == b; 
true => b == b; false => b = true; 
b < = true = b; b < = false == true; 
true <=> b = b; false <=> b == not b; 

theore~ 
band b == b; b or b = b; 
bl and b2 == b2 and bl ; bl or b2 = b2 or bl ; 

bl and (bl or b2 ) = bl ; bl or (bl and b2 ) = bl ; 

b and not b == false; b or not b = true; 
not not b = b; 
( bl and b2 ) and b3 = bl and ( b2 and b3 ); 

( bl or b2 ) or b3 == bl or ( b2 or b3 ); 

bl and ( b2 or b3 ) = ( bl and b2 ) or ( bl and b3 ); 

bl or ( b2 and b3 ) == ( bl or b2 ) and ( bl or b3 ); 

bl => b2 = if bl then b2 else true end if; 
bl <=b2 = b2 => bl ; 

bl <=> b2 == (bl => b2) and (bl <= b2); 

end module Bool; 

Fig. 412 

Chap. 4 

In our example of Fig. 4/2, the choice of constructors is 
straightforward. The operation axioms, however, can be constructed in 
many different ways. In the given specification the constructiveness. 
uniqueness and completeness constraints are met. This can be checked 
mechanically. Because the specification of Fig. 4/2 is also terminating, it is 
constructive. 

Notice that the axioms of a requirement (e.g., Fig. 3/20) are not 
involved in the left-to-right term rewriting process. They only represent 
some conditions that must be met by the actual parameters to meet the 
instantiation constraints. They are in fact theorems, see Fig. 4/3. In these 
cases, instead of the keyword axiom(s), we will write the keyword 
theorem(s) to indicate that the axioms are not taken into account for the 
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constructiveness, uniqueness and completeness constraints and for the 
termination. Notice also that a requirement must not define formal 
constructors but only formal operations. The formal operations can be 
bound with actual constructors as well as with actual operations. 

scheme ArrayScheme [ 

]; 

requirement Attribute; 
export all; 
sort Attribute; 
operation 

error: -> Attribute; 
end requirement Attribute; 

requirement Index; 
import Bool, true, _ and _ from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index * Index - > Bool; 
declare i, iI, i2, i3: Index; 
theorems 

i=i = true; 
il = i2 == i2 = il ; 

il = i2 and i2 = i3 ~ il = i3 true; 
end requirement Index; 

module Array; 
import Bool, true, false, not _ from Bool; 

all from Attribute, Index; 
export all; 
sort Array; 
constructors 

empty: -> Array; 
_ [ _I _]: Array * Attribute * Index -> Array; 

operations 
isundefined: Array * Index -> Bool; 
read: Array * Index -> Attribute; 

end module Array; 
end scheme ArrayScheme; 

Fig. 4/3 
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4.4 Equality Operation 

The equalities of the congruence relations defined by the axioms can be 
simulated by user-defined equality operations. This is illustrated in Fig. 
4/4 for the natural numbers. 

module Nat; 
import Bool, true, false, _ and _ from Bool; 
export all; 
sort Nat; 
constructors 

zero: -> Nat; 
suee: Nat -> Nat; 

operation 
_ = _: Nat· Nat -> Bool; 

declare n, nl> n2, n3: Nat; 
operation axioms 

zero = succ( n) = false; 
zero = zero = true; 
suee( n ) = zero = false; 
suee( nl ) = suecC n2) == nl = n2; 

theorems 
n = n = true; -- reflexivity 
nl = n2 = n2 = nl; -- symmetry 
( nl = n2 ) and ( n2 = n3 ) ~ nl = n3 

end module Nat; 

Fig. 4/4 

true; -- transitivity 

It is important to notice the difference between some user-defined 
equality operation and the equality of the congruence relation of the initial 
algebra. In Fig. 4/5 an abstract data type containing an equality operation 
is specified in such a way that the objects denoted by a and b are different 
(i.e. they do not belong to the same congruence class) although the equality 
operation _ = _ indicates them as equal. 

sort X; 
constructors 

a: -> X; 
b: -> X; 
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operation 
_ = _: X * X -> Bool; 

declare xl, X2: X; 
operation axiom 

Xl = X2 == true; 

Fig. 4/5 

4.5 Example 

Equality Operation 129 

In Fig. 4/6 a generic specification is given for the data type List. 
Comments are added to explain the meaning of the constructors and 
operations in an informal way. 

scheme ListScheme [ 

]; 

requirement Item; 
import Bool, true, _ and _ from Bool; 
export all; 
sort Item; 
operations 

undefined: -> Item; 
_ = _: Item * Item -> Bool; 

declare it, itl , it2, it3: Item; 
theorems 

it = it = true; -- reflexivity 
itl = it2 == it2 = itl; -- symmetry 
( itl = it2 ) and ( it2 = it3 ) => itl = it3 

end requirement Item; 
true; -- transitivity 

module List; 
import all from Bool, Item; 
export all; 
sort List; 
constructors 

nil: -> List; -- denotes the empty List 
_I _: Item * List - > List; -- adds Item to List 

operations 
head: List -> Item; -- returns the first Item of List 
tail: List -> List; -- returns all but the first Item of List 
_ & _: List * List - > List; -- appends the first List to the second List 
delete: Item * List -> List; -- deletes the last occurrence of Item (if any) in List 
remove: List * List -> List; -- deletes in the second List the last occurrence of 

-- each Item which is enumerated in the first List 
_ isin _: Item * List -> Bool; -- indicates whether Item is a member of List 
_ partof _: List * List -> Bool; -- indicates whether each item of the first List 
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-- has at least the same number of occurrences in the second List 
permutation: List· List -> Bool; -- indicates whether the two given Lists 

-- are permutations 
declare it, it!> it2: Item; list, list!> list2: List; 
operation axioms 

head( nil ) == undefined; 
head( it I nil ) = it; 
head( it2 I itl I list ) == head( itl I list ); 
tail( nil ) = nil; 
tail( it I nil ) == nil; 
tail( it2 I itl I list ) == it2 I tail( itl I list ); 
nil & list = list; 
( it llistl ) & list2 = it I ( listl & list2 ); 
delete( it, nil ) == nil; 
delete( itl , it2 I list ) == 

if itl = it2 
then list 
else it2 I delete( itt. list) 

end if; 
remove( nil, list) == list; 
remove( it llistt. list2 ) == remove( listt. delete( it, list2 ) ); 
it isin nil == false; 
itl isin it2 I list = 

if itl = it2 
then true 
else itl isin list 

end if; 
nil partof list = true; 
itl llistl partof list2 == 

if itl isin list2 
then listl partof delete( itt. list2 ) 
else false 

end if; 
permutation( listt. list2 ) == ( listl partof list2 ) and (list2 partof listl ); 

end module List; 
end scheme ListScheme; 

Fig. 4/6 

4.6 Constructor Axioms 

Chap. 4 

The need for constructor axioms can best be explained through a simple 
example. Consider the abstract data type Set that contains an empty set 0, 
the operation { _} to create a singleton, the operations insert and delete to 
put an item into or delete it from the set respectively, the operations _ U 

and n to take the union and the intersection of two sets 
respectively, and the operation isin to test whether an item belongs to a set. 
The operations part is shown in Fig. 417. 
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operations 
0: -> Set; 
{ _}: Item -> Set; 
insert, delete: Item * Set -> Set; 
_ U _: Set * Set -> Set; 
_ n _: Set * Set -> Set; 
is in: Item * Set -> Boo1; 

Fig. 417 
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In the next step we have to choose the constructors. Many solutions are 
possible. Mathematicians usually choose 0, { _ } and _ U _ as 
constructors. Programmers like to use 0 and insert. Still other 
combinations are possible. The complete scheme SetScheme is shown in 
Fig. 4/8, in which 0 and insert are chosen as constructors. The non
constructor operations are delete, { _ }, _ U _, _ n _ and isin. They are 
defined by describing their effect on terms built up of constructor names 
and variables only. 

scheme ItemRequirementScheme; 
req uiremen t Item; 

import Boo1, true, _ and _ from Boo1; 
export all; 
sort Item; 
operation 

_ = _: Item * Item -> Boo1; 
declare it, itt. it2, it3: Item; 
theorems 

it = it = true; 
itl = it2 == it2 = itl; 
( itl = it2 ) and ( it2 = it3 ) => itl = it3 true; 

end requirement Item; 
end scheme ItemRequirementScheme; 

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; ]; 
module Set; 

import Boo1, true, false from Boo1; 
all from Item; 

export all; 
sort Set; 
constructors 

0: -> Set; 
insert: Item * Set -> Set; 

operations 
delete: Item * Set -> Set; 
{ _}: Item -> Set; 
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_ U _: Set· Set -> Set; 
_ n _: Set· Set -> Set; 
isin: Item • Set -> Bool; 

declare s, s1, 52: Set; it, itt. it2: Item; 
operation axioms 

delete( it, 0 ) = 0; 
delete( it1, insert( it2, s ) ) == 

if it1 = it2 
then delete( it1, 5) 
else insert( it2, delete( it1, s ) ) 

end if; 
{ it } = insert( it, 0 ); 
s U 0=s; 
S1 U insert( it, s2 ) == insert( it, s1 U s2 ); 
s n 0=0; 
S1 n insert( it, s2 ) = 

if isin( it, s1 ) 
then insert( it, S1 n S2 ) 
else S1 n S2 

end if; 
isin( it, 0 ) == false; 
isin( it1, insert( it2, s ) ) == 

if it1 = it2 
then true 
else isin( itt. s ) 

end if; 
end module Set; 

end scheme SetScheme; 

Fig. 4/8 

Chap. 4 

Although this specification seems to define the abstract data type Set, it 
does not meet the following two important properties: 

• the order of the insertions is irrelevant: 

insert( itl' insert( it2' s ) ) == insert( it2' insert( itl' s ) ); 

• an inserted item may be added more than once without changing the set: 

insert( it. insert( it. s ) ) = insert( it. s ); 

We have an analogous problem if other operations are chosen as 
constructors. e.g., 0, { _ } and _ U -' see Fig. 4/9. 

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; ]; 
module Set; 

import Bool, true, false, _ or _ from Bool; 
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all from Item; 
export all; 
sort Set; 
constructors 

13: -> Set; 
{ _}: Item -> Set; 
_ U _: Set * Set -> Set; 

operations 
insert: Item * Set -> Set; 
delete: Item * Set -> Set; 
_ n _: Set * Set -> Set; 
isin: Item * Set -> Bool; 

declare s, s1, 82: Set; it, it!> it2: Item; 
operation axioms 

insert( it, s ) = { it } U 8; 
delete( it, 13 ) == 13; 
delete( it!> { it2 } ) == 

if it1 = it2 
then 13 
else { it2 } 

end if; 
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delete( it, 51 U 82 ) = delete( it, 81 ) U delete( it, 82 ) 
8 n 13=13; 
8 n {it} = 
if i8in( it, s ) 

then {it} 
else 13 

end if; 
8 n (81 U 52 ) == ( 8 n 81 ) U (s n s2 ); 
i8in( it, 13 ) = false; 
isin( it!> { it2 } ) = 

if it1 = it2 
then true 
else false 

end if; 
i8in( it, s1 U 82 ) == i8in( it, 81 ) or isin( it, 82 ); 

end module Set; 
end scheme SetScheme; 

Fig. 4/9 

This specification does not meet the following important properties: 

• 0 is the neutral element of the union function: 

o u s == s; s U 0 = s; 

• the commutativity of the union function: 
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• the associativity of the union function: 

Sl U (S2 U S3 ) == (Sl U S2 ) U S3; 

• and the idempotence of the union function: 

sUs == s; 

The properties given above are examples of constructor axioms. They 
cannot be derived as theorems from the specification. Notice that the use 
of such constructor axioms as left-to-right term rewriting rules would 
cause a termination problem. 

A constructor axiom of a module is an axiom whose left- and right
hand side (but its condition if any) only consist of variables and 
constructor names defined in this module and that has a left- (and right-) 
hand side the sort of which is also defined in this module. 

4.7 Semi-Constructive Specifications 

Specifications containing constructor axioms do not meet the 
constructiveness constraints and thus. strictly speaking. are not 
constructive. This means that in general we cannot use such specifications 
as a left-to-right term rewriting system for rapid pro to typing purposes. 
By imposing constraints on constructor axioms. rapid prototyping becomes 
still possible. These constraints are called semi-constructivity constraints 
and the specifications meeting these constraints are called semi
constructive. 

A specification is said to be semi-constructive if the following semi
constructivity constraints hold: 

• If the constructor axioms were deleted from the specification. the 
specification would become constructive. 

• Starting from an arbitrary term built up of variables and constructor 
names of the specification. it is impossible to derive an infinite number 
of literally different terms using the constructor axioms as left-to-right 
term rewriting rules. 

• The specification is ground confluent. A specification (consisting of 
modules. schemes and instantiations) is ground confluent if the 
equivalent specification is ground confluent and if no scheme may be 
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responsible for producing specifications that are not ground confluent 
for any possible correct instantiation. 

An equivalent specification is ground confluent if the following 
condition holds: If s. t1 and t2 are terms built up of constructor names 
only. such that both t1 and t2 are derived from s using the constructor 
axioms as left-to-right term rewriting rules. then there exists a term u 
built up of constructor names only such that u can be derived from t1 
as well as t2 using the constructor axioms as left-to-right term 
rewriting rules. This property. called ground confluence [Huet801. is 
graphically represented in Fig. 4/10. 

s 

u 

Fig. 4/10 

We now give a rule of thumb for detecting schemes that may be 
responsible for producing specifications that are not ground confluent for 
some of their instantiations. 

__ Given a scheme consisting of requirements and modules. We apply 
the definition of ground confluency to these modules. considering each 
variable of a sort defined in one of the requirements as a constructor name 
of that sort. 

By introducing semi-constructive specifications. a limited form of local 
non-constructivity is allowed. For each module. this non-constructivity 
(if any) is usually localized in a small number of constructor axioms. In 
general. the semi-constructivity constraints cannot be checked 
mechanically. In Fig. 4/11 the semi-constructive specification for sets is 
based on Fig. 4/8. 

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; ]; 
module Set; 

import Bool. true. false from Bool; 
all from Item; 

export all; 
sort Set; 
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constructors 
0: -> Set; 
insert: Item * Set -> Set; 

operations 
delete: Item * Set -> Set; 
{ _}: Item -> Set; 
_ U _: Set * Set -> Set; 
_ n _: Set * Set -> Set; 
isin: Item * Set - > Bool; 

declare s. Sl. S2: Set; it. itt. it2: Item; 
constructor axioms 

insert( it1. in5ert( it2• s ) ) = insert( it2. insert( itt. s ) ); 
insert( it. in5ert( it. 5 ) ) = insert( it. s ); 

operation axioms 
delete( it. 0 ) == 0; 
delete( it1. insert( it2. 5 ) ) = 

if it1 = it2 
then delete( itt. 5 ) 
else insert( it2. delete( itt. s ) ) 

end if; 
{ it } == insert( it. 0 ); 
5 U 0 == 5; 

51 U insert( it. 52 ) == insert( it. 51 U 52 ); 
5 n 0=0; 
sl n insert( it. S2 ) == 

if i5in( it. sl ) 
then insert( it. sl n 52 ) 
else sl n S2 

end if; 
isin( it. 0 ) = false; 
isin( itt. insert( it2. s ) ) = 

if it1 = it2 
then true 
else isin( itt. 5 ) 

end if; 
end module Set; 

end scheme SetScheme; 

Fig. 4/11 

Chap. 4 

To enable direct execution of semi-constructive specifications. the non
termination of the reduction process must be intercepted. A possible 
solution is one based on the run with merrwry option used in the OBH and 
OBJT systems [Goguen82. Futatsugi85. Goguen87c]. Constructor axioms 
are only applied if no operation axiom can be applied. Intermediate terms 
built up of constructor names only are remembered. and a constructor 
axiom is prevented from being applied if it produces a term that has 
already come up. The disadvantage of this method is a loss of efficiency in 
time and/or space of the reductor system. 

Another example of a semi-constructive specification is the array. see 
Fig. 4/12. 
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scheme ArrayScheme [ 

]; 

instantiate AttributeRequirementScheme; end instantiate; 
instantiate IndexRequirementScheme; end instantiate; 

-- see Fig. 3/43 

module Array; 
import Bool, true, false, not _ from Bool; 

all from Attribute, Index; 
export all; 
sort Array; 
constructors 

empty: -> Array; 
_[ _I _]: Array * Attribute * Index -> Array; 

operations 
isundefined: Array * Index -> Bool; 
read: Array * Index -> Attribute; 

declare ar: Array; i, ii, i2: Index; at, at!> at2: Attribute; 
constructor axioms 

not ( il = i2 ) => ar[ at1 iii ][ at2 I i2 ] = ar[ at2 I i2 ][ at1 iii ]; 
ar [ atl Ii] [ at2 Ii] == ar [ at2 Ii]; 

operation axioms 
isundefined( empty, i) = true; 
isundefined( ar [ at I il ], i2 ) = 

if il = i2 
then false 
else isundefined( ar, i2 ) 

end if; 
read( empty, i) == error; 
read( ar [ at Iii ], i2) = 

if il = i2 
then at 
else read( ar, i2 ) 

end if; 
end module Array; 

end scheme ArrayScheme; 

Fig. 4/12 

The specification of Fig. 4/13 is not semi-constructive because starting 
from, e.g., the term zero, it is possible to derive an infinite number of 
literally different terms using the constructor axioms as left-to-right term 
rewriting rules. Indeed, we obtain zero, succ( pre( zero) ), succ( pre( succ( 
pre( zero) ) ) ), ... The specification can be made semi-constructive by 
interchanging the left- and right-hand side in each constructor axiom. 
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module Integer; 
export all; 
sort Integer; 
constructors 

zero: -> Integer; 
suec: Integer -> Integer; 
pre: Integer -> Integer; 

operations 

declare i: Integer; 
constructor axioms 

i = succ( pree i) ); 
i = pre( succ( i) ); 

operation axioms 

end module Integer; 

Fig. 4/13 
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An example of a specification that is not semi-constructive is given in 
Fig. 4/14 [Mallgren82]. If the sets of variable-free terms of sort Value and 
of sort Point are both not empty (let us assume there is a term v of sort 
Value and a term p of sort Point that are both built up of constructor 
names only), then the specification of Fig. 4/14 is not ground confluent 
and thus not semi-constructive. Indeed, the term 

compose( compose( scale( v ). translate( p ) ), scale( v ) ) 

can be reduced to 

compose( scale( v ), compose( translate( p ), scale( v ) ) ) 

using the first constructor axiom. But it can also be reduced to 

compose( translate( v . p ), scale( v * v ) ) 

using the fourth, the first and the second constructor axiom respectively. 
There exists no term that can be derived from the two results using the 
constructor axioms as left-to-right term rewriting rules. 

module GeomF; 
import Value, _. _from Value; Point, _ + -J _. _from Point; 
export all; 
sort GeomF; 
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constructors 
scale: Value -> GeomF; 
translate: Point -> GeomF; 
compose: GeomF * GeomF -> GeomF; 

operations 
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declare gfl> gf2' gf3: GeomF; VI, v2: Value; PI, P2: Point; 
constructor axioms 

compose( compose( gfl> gf2 ), gf~ ) = compose( gfl> compose( gf2' gf3 )); 
compose( scale( vI ), scale( V2 ) ) == scale( VI * V2 ); 
compose( translate( PI ), translate( P2 ) ) = translate( PI + P2 ); 
compose( scale( VI ), translate( PI ) ) == compose( translate( VI • PI ), scale( vI ) ); 

operation axioms 

end module GeomF; 

Fig. 4/14 

The first semi-constructivity constraint states that, if the constructor 
axioms are deleted, the specification must be constructive and thus meet 
the uniqueness and completeness constraints. If constructor axioms were 
taken into account in the definitions of the uniqueness and completeness 
constraints, these constraints could not be checked mechanically. Notice 
also that the constructor axioms in a semi-constructive specification 
contain redundant information with respect to the operation axioms. As an 
example, consider the ArrayScheme of Fig. 4/12 which we instantiate by 
binding the indices as well as the attributes with the natural numbers, the 
term 

isundefined( empty [ 1 / 2 ] [ 2 / 3 ], 2 ) 

can be reduced in two different ways: the second operation axiom can be 
applied two times consecutively or the first constructor axiom can be 
applied and then the second operation axiom can be applied. Both give 
false as result. 

4.8 Inconsistency 

If constructor axioms are added to a constructive specification, we must be 
very careful not to violate the first hierarchical constraint, otherwise we 
may obtain an inconsistent specification. Assume that the specification of 
Fig. 4/11 contains the operation last as defined in Fig. 4/15. 

The specification is inconsistent because the term last( insert( itl' 
insert( it2, '" ) ) ) where itl and it2 are different items, may be reduced to 
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operation 
last: Set -> Item; 

declare it: Item; s: Set; 
operation axioms 

last( insert( it, S ) ) = it; 

Fig. 4/15 
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it! as well as itz depending on whether the constructor axiom is applied 
before the operation axiom of Fig. 4/15. 

In the next section a method for constructing requirements will be 
discussed that results in consistent parameterized specifications. 

4.9 On Constructing Requirements 
One of the main advantages of formal specification languages over 
traditional programming languages is the ability to provide not only 
syntactic but also semantic interfaces between the various parts of a 
system. Consider, e.g., generic packages in Ada [Ada83]; only syntactic 
information (including types) can be required from the parameters. With 
formal specifications also semantic properties (in the form of theorems) 
can be required from the parameters. 

In literature, however, most examples illustrating the parameterization 
of formal specifications contain rather trivial interfaces. The interfaces 
usually state that sorts and operations must be given. Semantic properties 
are seldom required except for reflexivity, symmetry and transitivity of 
the equality operations. This section describes a general method for 
building semantic interfaces in parameterized formal specifications. 
Moreover. the method is illustrated by means of an example dealing with a 
non-trivial semantic interface. 

The abstract data type GeomF. defining geometric functions. is specified 
by the module GeomF in Fig. 4/16. A parameterized version of GeomF 
will be given in Fig. 4/19. The abstract data type GeomF was used by 
Mallgren [Mallgren82] for the description of graphical languages. 
Examples of geometric functions are translations and scalings. 
Furthermore, the composition of two geometric functions yields a new 
geometric function. To limit the length of the example. we restrict 
ourselves to translations and compositions. We assume that a module 
Point has been predefined with a sort Point, an origin and two operations 

+ and 
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The module GeomF defines the sort GeomF of geometric functions. It 
has two constructors: translate and compose. The definition of the 
operation identity is straightforward. The operation inverse returns the 
inverse of a geometrical function. The ultimate goal is to apply the 
geometric functions to points, therefore an operation transform is defined. 
The meaning of the theorems is obvious. 

We decided to define compose as a constructor and not as an operation, 
as in [Mallgren82], where not only translations but also scalings are 
defined. Then. a composition of a translation and a scaling is, in general, 
neither a translation nor a scaling. In our example, compose is defined as a 
constructor for reasons of extendibility of our example with scalings. 

module GeomF; 
import Point, origin, _ + -J _ - _ from Point; 
export all; 
sort GeomF; 
constructors 

translate: Point -> GeomF; 
compose: GeomF * GeomF -> GeomF: 

operations 
identity: -> GeomF: 
inverse: GeomF -> GeomF; 
transform: GeomF * Point -> Point: 

declare P, Pi> P2: Point; gf, gfl> gf2, gf3: GeomF; 
constructor axioms 

compose( translate( Pl ), translate( P2 ) ) == translate( Pl + P2 ); -- c1 
compose( compose( gfl> g(2 ), gf3) = compose( gfl, compose( gf2' gf3 )); -- c2 

operation axioms 
identity = translate( origin ); -- 01 
inverse( translate( p ) ) = translate( origin - p ); -- 02 
inverse( compose( gfl> gf2 ) ) = compose( inverse( gf2 ), inverse( gfl ) ); -- 03 
transform( translate( Pl ), P2 ) = Pl + P2; -- 04 
transform( compose( gfl, gf2 ), P ) = transform( gfl, transform( gf2' p) ); -- 05 

theorems 
transform( identity, p) = P; -- t1 
compose( identity, gf ) == gf; -- t2 
compose( gf, identity) = gf; -- t3 
inverse( inverse( gf) ) == gf; -- t4 
compose( gf, inverse( gf)) = identity; -- t5 
compose( inverse( gf), gf) == identity; -- t6 

end module GeomF; 

Fig. 4/16 

Points in [Mallgren82] are two-dimensional Cartesian coordinates. In 
practice, points may also be n-dimensional Cartesian coordinates or polar 
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coordinates. Therefore. parameterization of the module GeomF would 
enhance its reusability. The syntactic part of the needed requirement. say 
requirement Point. can be derived from the import clause of Fig. 4/16. 
resulting in Fig. 4/17. 

requirement Point; 
export all; 
sort Point; 
operations 

origin: -> Point; 
_+ _: Point· Point -> Point; 
_-_: Point • Point - > Point; 

theorems 
• •• -- semantic properties 

end requirement Point; 

Fig. 4/17 

Stating the claimed semantic properties. i.e. constructing the theorems 
of the requirement. is a non-trivial job. We will propose a three-step 
method for constructing theorems of requirements. In a first step. 
theorems are deduced by proving the consistency of the operation axioms 
of the parameterized modules with respect to the constructor axioms. 
Proving the ground confluence property of the scheme. in particular of the 
constructor axioms of the parameterized modules. yields a second group of 
theorems of requirements. In a third step. theorems of requirements are 
derived from the theorems of the parameterized modules of the scheme. 
Consequently. the obtained theorems of the requirements guarantee that 
the constructor axioms and the operation axioms of the parameterized 
modules are ground confluent and consistent respectively. and that the 
theorems of the parameterized modules are always valid. 

Theorems Deduced from the Consistency Property 

By proving the consistency of the operation axioms of the parameterized 
module with respect to its constructor axioms (see Section 4.8). a first 
group of theorems for the requirement Point may be derived. Applying 
the operation inverse to the left-hand side of each constructor axiom must 
yield the same result as applying it to the corresponding right-hand side. 
The same must be true for the operation transform. 
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1. Operation inverse and constructor axiom c1: 

a) inverse( compose( translate( PI ), translate( pz ) ) ) 
== compose( inverse( translate( pz ), 

inverse( translate( PI ) ) ) ) -- see 03 
== compose( translate( origin - pz ), translate( origin - PI )) -- see 02 
== translate( ( origin - pz ) + ( origin - PI ) ) -- see cl 

b) inverse( translate( PI + pz ) ) 
== translate( origin - (PI + pz ) ) -- see 02 

-- ( origin - pz ) + ( origin - PI ) == origin - ( PI + pz ); 

2. Operation inverse and constructor axiom c2: 

a) inverse( compose( compose( gfl' gfz ), gf3) ) 
== compose( inverse( gf3 ), inverse( compose( gfl' gfz ) ) ) -- see 03 
== compose( inverse( gf3 ), 

compose( inverse( gfz ), inverse( gfl ) ) ) -- see 03 
b) inverse( compose( gfl' compose( gfz, gf3 ) ) ) 

== compose( inverse( compose( gfz, gf3 ) ), inverse( gfl ) ) -- see 03 
== compose( compose( inverse( gf3 ), 

inverse( gfz ) ), inverse( gfl ) ) -- see 03 
== compose( inverse( gf3 ), 

compose( inverse( gfz ), inverse( gfl ) ) ) -- see c2 
Both deductions yield the same result. 

3. Operation transform and constructor axiom c1: 

a) transform( compose( translate( PI ), translate( pz ) ), p ) 
== transform( translate( PI ), 

transform( translate( pz ), p ) ) 
== transform( translate( PI ), ( pz + p ) ) 
== PI + ( pz + p ) 

b) transform( translate( PI + pz ), p ) 
= (PI + pz ) + p 

-- PI + ( pz + p ) == ( PI + pz ) + p; 

4. Operation transform and the constructor axiom c2: 

a) transform( compose( compose( gfl' gfz ), gf3 ), p ) 
== transform( compose( gfl' gfz ), transform( gf3' p ) ) 
== transform( gfl' transform( gfz, transform( gf3' p ) ) ) 

b) transform( compose( gfl' compose( gfz, gf3 ) ), p ) 

-- see 05 
-- see 04 
-- see 04 

-- see 04 

-- see 05 
-- see 05 
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== transform( gf1' transform( compose( gf2' gf3 ). P ) ) 
== transform( gf1• transform( gf2• transform( gf3 .p) ) ) 

Both deductions yield the same result. 

Chap. 4 

-- see 05 
-- see 05 

Theorems Deduced from the Ground Confluence Property 

Proving the ground confluence property of the scheme. in particular of the 
constructor axioms of the parameterized modules (see Section 4.7). yields a 
second group of theorems of requirements. 

The minimal overlapping term between the left-hand sides of the 
constructor axioms c1 and c2 is: 

compose( compose( translate( P1 ). translate( P2 ) ). gf ) 

Assume that every geometric function of Fig. 4/16 can be written as a 
translation. Then. we can replace the variable gf in the minimal 
overlapping term by the term translate( P3 ). 

compose( compose( translate( P1 ). translate( P2 ) ). translate( P3 ) ) 

The rule of thumb of Section 4.7 says that if we consider Pl. P2 and P3 
as constructor names of sort Point. the above term (built up of constructor 
names only) must be reduced to the same result via both constructor 
axioms. 

compose( compose( translate( P1 ). 
translate( P2 ) ). translate( P3 ) ) == 

a) compose( translate( P1 + P2 ). translate( P3 ) ) 
== translate( ( P1 + P2 ) + P3 ) 

b) compose( translate( P1 ). 
compose( translate( P2 ). translate( P3 ) ) ) 

== compose( translate( PI ). translate( P2 + P3 ) ) 
= translate( PI + ( P2 + P3 ) ) 

... PI + ( P2 + P3 ) == ( PI + P2 ) + P3: 

-- see c1 
-- see c1 

-- see c2 
-- see c1 
-- see c1 

In order to assert this suffices to prove the ground confluence of the 
scheme. we still have to prove that every geometric function of Fig. 4/16 
can be written as a translation. If we denote this property as istranslation( 
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gf ). it can be proved according to the following induction scheme 

istranslation( translate( p ) ) 
istranslation( gf 1 ) and 

istranslation( gfz) => istranslation( compose( gfl. gfz)) 

induction base: 
istranslation( translate( p ) ) 
= true -- see definition of istranslation 

induction hypotheses: 
istranslation( gf 1 ) == true: 

or gf 1 may be written as translate( Pl ) 
istranslation( gfz ) = true: 

or gfz may be written as translate( pz ) 
induction conclusion: 

istranslation( compose( gfl' gfz ) ) 
= istranslation( compose( translate( Pl ) • translate( pz ) ) 

-- see indo hypo 
== istranslation( translate( Pl + pz ) ) -- see c1 
=== true -- see definition of istranslation 

Theorems Deduced from the Theorems of the Scheme 

In a last step. theorems of requirements are derived from the theorems of 
the parameterized modules. We derive sufficient and necessary theorems 
for the requirement Point so that the theorems of module GeomF are valid. 

In order to prove 

transform( identity. p ) = p: 

transform( identity. p ) 
== transform( translate( origin ). p ) 
= origin + p 

.... origin + p = p: 

In order to prove 

compose( identity. gf ) = gf: 

-- t1 

-- see 01 
-- see 04 

-- t2 

we use induction over the variable gf according to the following induction 



www.manaraa.com

146 Constructive Specifications 

scheme where theorem 2 is denoted as t2( gf ) 

t2( translate( p ) ) 
t2( gfl ) => t2( compose( gf1. gf2 ) ) 

induction base: 
compose( identity. translate( p ) ) 
== compose( translate( origiri ). translate( p ) ) 
== transla tee origin + p ) 
__ origin + p = p: 

induction hypothesis: 
compose( identity. gf1 ) == gf1: 

induction conclusion: 
compose( identity. compose( gf1' gf2 ) ) 
= compose( compose( identity. gf1 ). gf2 ) 
== compose( gf1' gf2 ) 

Chap. 4 

-- see 01 
-- see c1 

-- see c2 
-- see indo hypo 

For the example of Fig. 4/16 a simpler proof of theorem 2 can be given 
based on the property that every geometric function can be written as a 
translation. We have given a proof that can easily be generalized if 
scalings [Mallgren82] or rotations [Huyghe87] are introduced. 

In order to prove 

compose( gf. identity) == gf: --t3 

we use induction over the variable gf according to the following induction 
scheme where theorem 3 is denoted as t3( gf ) 

t3( translate( p ) ) I 
t3( gf2 ) => t3( compose( gf1. gf2 ) ) I 

induction base: 
compose( translate( p ). identity) 
== compose( translate( p ). translate( origin) ) 
== translate( p + origin) 
__ p + origin = p: 

induction hypothesis: 
compose( gf2' identity) == gf2: 

induction conclusion: 
compose( compose( gf1' gfz ). identity) 

-- see 01 
-- see c1 
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== compose( gfl' compose( gfz, identity) ) 
== compose( gfl' gfz ) 

In order to prove 

inverse( inverse( gf ) ) == gf: 

-- see c2 
-- see indo hypo 

-- t4 

we use induction over the variable gf according to the following induction 
scheme where theorem 4 is denoted as t4( gf ) 

t4( translate( p ) ) 
t4( gfl ) and t4( gfz ) => t4( compose( gfl' gfz ) ) 

induction base: 
inverse( inverse( translate( p ) ) ) 
== inverse( translate( origin - p ) ) -- see 02 
= translate( origin - ( origin - p ) ) -- see 02 
.. origin - ( origin - p ) == p: 

induction hypotheses: 
inverse( inverse( gfl ) ) = gfl: 
inverse( inverse( gfz ) ) = gfz: 

induction conclusion: 
inverse( inverse( compose( gfl' gf2 ) ) ) 
== inverse( compose( inverse( gf2 ), inverse( gfl ) ) ) -- see 03 
== compose( inverse( inverse( gfl ) ), inverse( inverse( gfz ) ) ) 

-- see 03 
== compose( gfl' gf2 ) -- see indo hypo 

In order to prove 

compose( gf, inverse( gf ) ) == identity: -- t5 

we use induction over the variable gf according to an induction scheme 
similar to that of theorem 4. 

induction base: 
compose( translate( p ), inverse( translate( p ) ) ) 
== compose( translate( p ), translate( origin - p ) ) 
== translate( p + ( origin - p ) ) 
.. p + ( origin - p ) = origin: 

induction hypotheses: 
compose( gfl' inverse( gfl ) ) = identity: 

-- see 02 
-- see c1 
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compose( gf2' inverse( gf2 ) ) == identity; 
induction conclusion: 

compose( compose( gfl' gf2 ), inverse( compose( gfl' gf2 ) ) ) 
== compose( compose( gfl' gf2 ), 

compose( inverse( gf2 ), inverse( gfl ) ) ) 
== compose( compose( compose( gfl' gf2 ), inverse( gf2 ) ), 

inverse( gf 1 ) ) 

= compose( compose( gfl' compose( gf2' inverse( gf2 ) ) ), 
inverse( gf 1 ) ) 

Chap. 4 

-- see 03 

-- see c2 

-- see c2 
== compose( compose( gfl' identity), inverse( gfl ) ) 
== compose( gf 1, inverse( gf 1 ) ) 

-- see indo hypo 
-- see t3 

== identity -- see indo hypo 

In order to prove 

compose( inverse( gf ), gf ) == identity; -- t6 

we use induction over the variable gf according to an induction scheme 
similar to that of theorem 4. 

induction base: 
compose( inverse( translate( p ) ), translate( p ) ) 
== compose( translate( origin - p ), translate( p ) ) 
= translate( ( origin - p ) + p ) 
__ ( origin - p ) + P == origin; 

induction hypotheses: 
compose( inverse( gfl ), gfl ) == identity: 
compose( inverse( gf2 ), gf2 ) = identity: 

induction conclusion: 
compose( inverse( compose( gfl' gf2 ) ), compose( gfl' gf2 ) ) 
== compose( compose( inverse( gf2 ), inverse( gfl ) ), 

compose( gfl' gf2 ) ) 
= compose( inverse( gf2 ), 

compose( inverse( gfl ), compose( gfl' gf2 ) ) ) 
== compose( inverse( gf2 ), 

-- see 02 
-- see c1 

-- see 03 

-- see c2 

-- see c2 compose( compose( inverse( gfl ), gfl ), gf2 ) ) 
= compose( inverse( gf2 ), compose( identity, gf2 ) ) 
== compose( inverse( gf2 ), gf2 ) 

-- see indo hypo 
-- see t2 

== identity -- see indo hypo 

The theorems deduced above are grouped in a requirement called Point, 
shown in Fig. 4/18. The first theorem expresses the associativity of the 
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addition. The next two theorems state that origin denotes the identity of 
the addition. Then. two theorems dictate that every point has an inverse 
element with respect to the addition. The last two theorems are redundant 
since they can be derived by equational reasoning from the previous ones. 
Mathematicians would say that sort Point with the operation _ + _ must 
form a group. 

requirement Point; 
export all; 
sort Point; 
operations 

origin: -> Point; 
_ + _: Point * Point -> Point; 
_ - _: Point * Point -> Point; 

declare P. Pl. P2. P3 : Point; 
theorems 

PI + ( P2 + P3 ) == ( PI + P2 ) + P3; 
origin + P = P; 
P + origin = p; 
P + ( origin - p) = origin;. 
( origin - p) + P == origin; 
origin - ( origin - P ) = p; 
( origin - P2 ) + ( origin - PI ) == origin - ( PI + P2 ); 

end requirement Point; 

Fig. 4/18 

In Fig. 4/19 the obtained scheme is shown. 

scheme GeomFScheme [ 
requirement Point; 

import all from domain; 
export all; 
sort Point; 
operations 

origin: -> Point; 
_ + _: Point· Point -> Point; 
_ - _: Point * Point -> Point; 

declare P. Plo P2. P3 : Point; 
theorems 

PI + ( P2 + P3 ) = ( PI + P2 ) + P3; 
origin + P = P; 
P + origin = P; 
P + ( origin - p) = origin;. 
( origin - p) + P = origin; 
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end requirement Point; 
]; 
module GeomF; 

import all from Point; 
export all; 
sort GeomF; 
constructors 

translate: Point -> GeomF; 
compose: GeomF· GeomF -> GeomF; 

operations 
transform: GeomF· Point -> Point; 
inverse: GeomF -> GeomF; 
identity: -> GeomF; 

declare p, Pl> P2: Point; gf, gfl, gf2' gf3: GeomF; 
constructor axioms 

compose( translate( PI ), translate( P2 ) ) == 
translate( PI + P2 ); 

compose( compose( gfl> gf2 ), gf3 ) == 
compose( gfl> compose( gf2' gf3 ) ); 

operation axioms 
identity = translate( origin); 
inverse( translate( P ) ) == translate( origin - p); 
inverse( compose( gfl> gf2 )) == compose( inverse( gf2 ), inverse( gfl )); 
transform( translate( PI ), P2 ) = PI + P2; 
transform( compose( gfl> gf2 ), P ) == transform( gfl, transform( gf2' p) ); 

theorems 
transform( identity, p) == P; 
compose( identity, gf) = gf; 
compose( gf, identity) == gf; 
inverse( inverse( gf ) ) == gf; 
compose( gf, inverse( gf)) = identity; 
compose( inverse( gf), gf) == identity; 

end module GeomF; 
end scheme GeomFScheme; 

Fig. 4/19 

Chap. 4 

In this section we have presented a three-step method to build semantic 
interfaces of parameterized specifications. The method is based on proving 
the consistency and the ground confluence of the parameterized modules 
and on the validation of their theorems. Consequently, this consistency, 
ground confluence and validity are guaranteed. 

The three-step method has been illustrated by means of the example of 
geometric functions. The resulting interface nicely expresses that the sort 
Point with its addition must form a group. The axioms and theorems of 
the non-parameterized module we started from (see Fig. 4/16), were taken 
from a subset of Mallgren's specification of geometric functions 
[Mallgren82]. Mallgren did not treat parameterization in his specification. 
It was nice to see that neither the axioms nor the theorems had to be 
modified to obtain the resulting interface by means of our three-step 
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method. The same method can be applied to Mallgren's complete 
specification. Therefore, the original specification (see Fig. 4/14) has to be 
made ground confluent by adding the appropriate constructor axioms. The 
resulting semantic interface will state that the points and the scalar values 
(used for scaling) must form a field. 

Our three-step method requires specifications to be ground confluent 
and consistent, thus restricting the class of specifications that can be 
treated. Another point is that deriving semantic interfaces by means of 
our three-step method can be a tedious job. To make such a process 
feasible, powerful theorem provers are a necessity. 

4.10 Claiming Modules 

In Chapter 3 the definition of a requirement was given. Many examples 
illustrating the notion of requirement can be found in Chapters 3 and 4. 
The notion of requirement has been defined in such a way that the abstract 
data type defined by an actual module need not be an initial algebra of the 
requirement. The abstract data type of the actual module may have less, 
the same or more objects with respect to the initial algebra of the 
requirement. Consider Fig. 4/20. 

scheme XScheme [ 
requirement ListNat; 

import Nat from Nat; 
export all; 
sortL 
operations 

new: -> L; 
add: Nat' L -> L; 

end requirement ListNat;. 
]; 

module X; 

end module X; 
end scheme XScheme; 

Fig. 4/20 

It is not allowed to define within the module X a new operation as in Fig. 
4121. 
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module X; 

operation 
first: L -> Nat; 

declare n, nl> n2: Nat; 1: L; 
operation axioms 

first( new) = zero; 
first( add( n, new) ) = n; 
first( add( nl> add( n2, 1) ) = first( add( n2, 1 ) ); 

end module X; 

Fig. 4121 

Chap. 4 

Nor is it allowed to use a case construct with a case index of sort L. The 
reason for this is that the uniqueness and completeness constraints cannot 
be guaranteed to be met for all possible instantiations. The module X in 
Fig. 4/21 is safe only if we could guarantee the existence of a bijection 
between the objects of sort L and the objects of the sort defined by any 
possible actual module that may be bound with the requirement ListNat. 

Therefore, a more restricted kind of requirements is introduced by 
allowing a scheme to claim not only requirements but also modules. If a 
module is claimed by a scheme. the following conditions must be met by 
any (partial) instantiation that binds the claimed module with an actual 
module. 

1. Every formal sort defined in the claimed module must be bound with 
a sort defined by or imported in the actual module. 

2. Every formal constructor defined in the claimed module must be 
bound with a constructor or an operation that is defined by or 
imported in the actual module. such that the rank of the constructor 
is preserved. 
Every formal non-constructor operation defined in the claimed 
module must be bound with a constructor or an operation that is 
defined by or imported in the actual module, such that the rank of 
the operation is preserved. 

3. The formal constructor axioms, operation axioms and theorems of the 
claimed module must be preserved by the actual data types. 

4. For every formal sort Sf of the claimed module that is bound with an 
actual sort Sa' a (data) bijection must exist between the (formal) 
objects of sort Sf belonging to the initial algebra of the claimed 
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module and the objects of sort Sa of the abstract data type defined by 
the actual module. 

The first three conditions can be considered as a restricted version of the 
conditions in the definition of parameter morphism for claimed 
requirements. see Section 3.4.1. The extra fourth condition is the essential 
difference between claiming a module and claiming a requirement. 

An example of claiming a module is given in Fig. 4122. Mod3 is the 
formal module whereas ThreeThings is the actual module. 

scheme XScheme [ 

]; 

module Mod3; 
export all; 
sort Mod3; 
constructors 

zero: -> Mod3; 
succ: Mod3 - > Mod3; 

constructor axiom 
succ( succ( succ( zero) ) ) = zero; 

end module Mod3; 

module X; 
import all from Mod3 

operation 
f: Mod3 -> ... ; 

declare m: Mod3; ••• 
operation axioms 

f( zero) = ••. ; 
f( succ( m ) ) == ••• ; 

end module X; 
end scheme XScheme; 

module ThreeThings; 
export all; 
sort ThreeThings; 
constructors 

one. two. three: -> ThreeThings; 
operation 

next: ThreeThings - > ThreeThings; 
operation axioms 

next( one) = two; 
next( two) = three; 
next( three) = one; 

end module ThreeThings; 

instantiate XScheme; 
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with Mod3 as ThreeThings, 
zero as one, 
succ as next; 

end instantiate; 

Fig. 4122 

Chap. 4 

Notice the (data) bijection between the objects of the initial algebra of the 
claimed module Mod3 and the actual objects of sort ThreeThings: 

zero 
succ( zero) 

succ( succ( zero ) ) 

one 
two 
three 

Both modules and requirements can be claimed by a scheme. Instead of 
writing claimed modules or requirements, an instantiation may be given 
that is equivalent to one or more modules and/or requirements. An 
example is given in Fig. 4123. Between the square brackets an instantiation 
is given which is equivalent to a module List. This module List is claimed 
by the scheme FerryProblem. 

scheme FerryProblem [ 
requirement Object; 

import Bool, true, _ and _ from Bool; 
export all; 
sort Object; 
operations 

error: - > Object; 
_ = _: Object· Object -> Bool; 

declare ob, obi> ob2, ob3: Object; 
theorems 

ob = ob == true; 
obt = ob2 == ob2 = obt; 
( obt = ob2 ) and ( ob2 = ob3 ) => obt = ob3 true; 

end requirement Object; 

instantiate ListScheme; -- see Fig. 4/6 
with Item as Object, 

Item as Object, 
undefined as error, 

= as_=....; 
end instantiate ListScheme; 

requirement Constraints; 
import all from List; 

end requirement Constraints; 
]; 
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I .,.. ~hem, ."",Probl,m; 

Fig. 4123 

4.11 The Cartesian Product of Sorts 

An advanced feature is the possibility to define a new sort as the Cartesian 
product of other sorts. A Cartesian product 

stands for the definition of sort S 

sort S; 

with one constructor 

constructor 
( _. _ •...• _ ): Sl * S2 * ... * Sc -> S; 

and a selector and an update operation for each of the sorts Sl. S2 .... and 
Sc: 

operations 
slOf _: S -> Sl; 
s20f _: S -> S2; 

scOf _: S -> Sc; 
_ [ _ / Sl ]: S * Sl - > S; 
_ [_ / S2 ]: S * S2 -> S; 

_ [ _ / Sc ]: S * Sc - > S; 
declare Xl. Yl: Sl; X2. Y2: S2; ...• Xc' Yc: Sc; 
operation axioms 

slOf (Xl' X2 ..... Xc) == Xl; 
s20f ( Xl. X2 •...• Xc ) == X2; 

scOf ( Xl. X2 •...• Xc ) = Xc; 
( Xl. X2 ..... Xc) [Yl / Sl ] == ( Yl. X2 ....• Xc ); 
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Each time a Cartesian product is formed, a new sort with appropriate 
constructor, selector and update operations is defined. An example is 
shown in Fig. 4124. 

sort PABX == PhonePool* BookingOffice * WakeUpService * MeetingPool; 

Fig. 4/24 

This definition stands for the sort, constructor, selector and update 
operations of Fig. 4125. 

sort PABX; 
constructor 

( -J -J -J _): PhonePool* BookingOffice * WakeUpService * MeetingPool-> PABX; 
operations 

phonePoolOf _: PABX -> PhonePool; 
bookingOfficeOf _: P ABX - > BookingOffice; 
wakeUpServiceOf _: PABX -> WakeUpService; 
meetingPoolOf _: PABX -> MeetingPool; 
_[ _I phonePool]: PABX * PhonePool-> PABX; 
_[ _I bookingOffice]: PABX * BookingOffice -> PABX; 
_[ _I wakeUpService]: PABX * WakeUpService -> PABX; 
_[ _I meetingPool]: PABX * MeetingPool-> PABX; 

declare pabx: PABX; pI: PhonePool; be: BookingOffice; we: WakeUpService; 
ml: MeetingPool; 

operation axioms 
phonePoolOf ( pI, be, we, ml ) = pI; 
bookingOfficeOf ( pI, be, we, ml ) == be; 
wakeUpServiceOf ( pI, be, we, ml ) = we; 
meetingPoolOf ( pI, be, we, ml ) == ml; 
pabx [ pI I phonePool ] == ( pI, bookingOfficeOf pabx, wakeUpServiceOf pabx, 

meetingPoolOf pabx ); 
pabx [ be I bookingOffice ] == ( phonePoolOf pabx, be, wakeUpServiceOf pabx, 

meetingPoolOf pabx ); 
pabx [ we I wakeUpService ] == ( phonePoolOf pabx, bookingOfficeOf pabx, we, 

meetingPoolOf pabx ); 
pabx [ mIl meetingPool ] == ( phonePoolOf pabx, bookingOfficeOf pabx, 

wakeUpServiceOf pabx, ml ); 

Fig. 4125 
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4.12 Constructivity and Abstraction 

The main characteristic of the specification language proposed in this 
chapter is that the specifications are (semi-)constructive. In the sequel, by 
non-constructive specifications we mean specifications that are neither 
constructive nor semi-constructive. Constructivity is a very important 
property since it enables rapid prototyping. In this way. a software 
system can be tested before it is implemented. The drawback of 
constructivity is a possible loss of abstraction. Indeed. if a non
constructive specification is found. it often has a higher level of abstraction 
than the constructive version. 

This will be illustrated by the example of a very simple robot system. 
The world of the robot is a large flat plane. Criss-crossing this world are 
horizontal streets and vertical avenues at regular one block intervals. A 
corner is located wherever a street and an avenue intersect. The robot can 
be placed on any corner. facing one of the four compass orientations. The 
instruction start places the robot in its initial position. When the robot 
executes the instruction move. he moves forward one block and continues 
to face the same direction. When the robot executes the instruction turn. 
he turns 90 degrees to the left. A non-constructive specification is shown 
in Fig. 4/26. 

sort Position; 
operations 

start: - > Position; 
move: Position - > Position; 
turn: Position - > Position; 

declare pos: Position; 
axioms 

turn( turn( turn( turn( pos ) ) ) ) = pos; 
turn( move( turn( move( turn( move( turn( move( pos ) ) ) ) ) ) ) ) = pos; 
turn( turn( move( turn( turn( move( pos ) ) ) ) ) ) == pos; 

Fig. 4126 

The first axiom states that if the robot executes the instruction turn four 
times. its place and direction are the original ones. The second axiom states 
that if the robot executes four times the instruction sequence move and 
turn (i.e. goes around a block). its place and direction are the original ones. 
The last axiom indicates that if the robot moves forwards. turns 180 
degrees. moves forwards and turns 180 degrees. its place and direction are 
again the original ones. 

A semi-constructive specification may be as shown in Fig. 4/27. 
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module Street; 
export Street, startStreet, nextStreet, prevStreet; 
sort Street; 
constructors 

startStreet: - > Street; 
nextStreet: Street - > Street; 
prevStreet: Street - > Street; 

declare s: Street; 
constructor axioms 

prevStreet( nextStreet( ( s ) ) = s; 
nextStreet( prevStreet( ( s ) ) == s; 

end module Street; 

module Avenue; 
export Avenue, startAvenue, nextAvenue, prevAvenue; 
sort Avenue; 
constructors 

startAvenue: -> Avenue; 
nextAvenue: Avenue -> Avenue; 
prevAvenue: Avenue -> Avenue; 

declare a: Avenue; 
constructor axioms 

prevAvenue( nextAvenue( a)) = a; 
nextAvenue( prevAvenue( a)) == a; 

end module Avenue; 

module Robot; 

Chap. 4 

import Orientation, north, east, south, west, turn left from Orientation; -- see Fig. 2/16 
Street, startStreet, nextStreet, prevStreet from Street; 
Avenue, startAvenue, nextAvenue, prevAvenue from Avenue; 

export start, move, turn; 
sort Position =:= Street * Avenue * Orientation; 
operations 

start: - > Position; 
move: Position -> Position; 
turn: Position -> Position; 

declare s: Street; a: Avenue; 0: Orientation; pos: Position; 
operation axioms 

start = ( startStreet, startAvenue, east); 
move( ( s, a, north) ) = ( nextStreet( s ), a, north ); 
move( ( s, a, east) ) = ( s, nextAvenue( a), east); 
move( ( s, a, south) ) == ( prevStreet( s ), a, south ); 
move( (s, a, west)) = (s, prevAvenue( a), west); 
turn( ( s, a, 0 ) ) = ( s, a, turnleft( 0 ) ); 

theorems 
turn( turn( turn( turn( pos ) ) ) ) = pos; 
turn( move( turn( move( turn( move( turn( move( pos ) ) ) ) ) ) ) ) == pos; 
turn( turn( move( turn( turn( move( pos ) ) ) ) ) ) = pos; 

end module Robot; 

Fig. 4127 
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This semi-constructive specification is longer and less abstract than the 
non-constructive one. The former may be considered as an implementation 
of the latter. The advantage of the semi-constructive specification is that 
rapid prototyping is possible. Furthermore, rigorous reasoning is easier. 
As an example, for the non-constructive specification it is very hard to 
prove that 

theorem 
turn( turn( turn( move( turn( move( pos ) ) ) ) ) ) == 

move( turn( turn( turn( move( turn( pos ) ) ) ) ) ); 

(though it can be done using equational reasoning). For the constructive 
specification, however, the above theorem can easily be proved using the 
axioms as left-to-right term rewriting rules, if we replace the variable pos 
successively by (s, a, north), (s, a, east), (s, a, south) and (s, a, west). If 
the robot system and its world are extended with walls, beepers and a 
library of instructions, the semi-constructive version is most appropriate 
[Lewi85b]. The price that must be paid is a lower level of abstraction. 

4.13 Bibliographic Notes 

Although in the early days of algebraic specifications no explicit 
distinction between constructors and non-constructor operations was made, 
the pioneers of algebraic specifications intuitively did, e.g., [Guttag78a, 
Goguen78]. It demonstrates that it is quite natural to distinguish between 
data and procedural abstraction. Making this distinction explicit results in 
more readable and reliable specifications [Mallgren82, Goovaerts84, Van 
Puymbroeck84]. 

Constructors are called generators in [Goovaerts84, Van Puymbroeck84] 
and basic generators in [Mallgren82]. No explicit distinction between data 
and procedural abstraction is made neither in OBI [Futatsugi85] nor in 
ACT ONE [Ehrig85]. 

The uniqueness and completeness constraints were taken from 
[Goovaerts84, Van Puymbroeck84], where the completeness constraint is 
called exhaustiveness constraint. In [Van Puymbroeck84] an algorithm can 
be found to check the uniqueness and completeness constraints in a 
mechanical way. 

The addition of axioms of non-constructive specifications as theorems 
to a constructive specification was done by [Mallgren82] also. 
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Semi-Constructive Specifications 

A more severe property than ground confluence is confluence [Huet80, 
Lescanne85]. The conditions for confluence are as follows: if s, tl and tz 
are terms built up of variables and constructor names, such that both tl 
and tz are derived from s using the constructor axioms as left-to-right 
term rewriting rules, then there exists a term u built up of variables and 
constructor names such that u can be derived from tl as well as tz using 
the constructor axioms as left-to-right term rewriting rules. 

Confluence as well as ground confluence, and thus semi-constructivity, 
are in general undecidable [Huet80, Gobel87]. 

The confluence property is equivalent to the Church-Rosser property. 
The Church-Rosser property states that, for all terms sand t, sand t can 
be proved equal by equational reasoning if and only if there exists a term u 
such that both sand t can be reduced to u using the axioms as left-to-right 
term rewriting rules [Huet80, Coleman85]. 

One can get around the problems with constructor axioms in many 
ways. A first solution consists of not using constructor axioms: both Fig. 
4/8 and Fig. 4/9 are then considered as specifications for sets. 

Another solution is to use hidden operations for some of the 
constructors. By using the hidden operation hinsert, the module Set of Fig. 
4/8 is redefined in Fig. 4/28. 

scheme SetScheme [ 

]; 

requirement Item; 
import Bool, true, _ and -' not _ from Bool; 
export all; 
sort Item; 
operations 

_ = _: Item * Item -> Bool; 
_ < _: Item * Item -> Bool; 

declare it, itt. it2, it3: Item; 
theorems 

it = it = true; 
it! = it2 == it2 = it!; 
( it! = it2 ) and ( it2 = it3 ) ~ it! = it3 = true; 
it! = it2 ~ it! < it2 == false; 
not ( it! = it2 ) ~ it! < it2 == note it2 < it! ); 
( it! < it2 ) and ( it2 < it3 ) ~ it! < it3 == true; 

end requirement Item; 

module Set; 
import Bool, true, false from Bool; 

all from Item; 
export all except hinsert; 
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sort Set; 
constructors 

0: -> Set; 
hinsert: Item • Set - > Set; 

operations 
insert: Item· Set -> Set; 
delete: Item • Set - > Set; 
{ _}: Item -> Set; 
_ U _: Set· Set -> Set; 
_ n _: Set· Set -> Set; 
is in: Item • Set -> Bool; 

declare s, 81, 82: Set; it, itt. it2: Item; 
operation axioms 

in8ert( it, 0 ) = hinsert( it, 0 ); 
insert( it1, hinsert( it2, s ) ) = 

if it1 < it2 
then hinsert( it1, hinsert( it2, 8 ) ) 
else 

if it1 = it2 
then hinsert( it2, s ) 
else hinsert( it2, insert( itt. s ) ) 

end if 
end if; 

delete( it, 0 ) == 0; 
delete( it1, hinsert( it2, s) ) == 

if it1 = it2 
then 8 

else 
if it1 < it2 

then hinsert( it2, 8 ) 
else hinsert( it2, delete( it1, s ) ) 

end if 
end if; 

{ it } == hinsert( it, 0 ); 
s U 0 == 8; 
81 U hinsert( it, s2 ) = insert( it, 81 U s2 ); 
8 n 0=0; 
S1 n hinsert( it, s2 ) == 
if isin( it, s1 ) 

then in8ert( it, 81 n s2 ) 
else 81 n 82 

end if; 
isin( it, 0 ) == false; 
isin( it1, hinsert( it2, s ) ) == 

if it1 = it2 
then true 
else 

if it1 < it2 
then false 
else isin( itt. s) 

end if 
end if; 

end module Set; 
end scheme SetScheme; 

Fig. 4/28 

Bibliographic Notes 161 
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We believe that this solution is too implementation-oriented. 
In OBJ2 [Futatsugi85] attributes are added to the operations instead of 

writing constructor axioms. In OBJ2 attributes are only provided for 
expressing associativity. commutativity. identity elements and 
idempotence. see Fig. 3/51. 

Termination 

Termination of a term rewriting system is in general undecidable [Huet78]. 
However good methods that can prove termination in most of the cases. do 
exist. A straightforward method is suggested in [Dershowitz85]: 

A term rewriting system is terminating if there exists a well-founded 
ordering > (i.e. without any infinite descending sequence of terms) 
that is compatible with rewriting (i.e. for all terms sand t: if s rewrites 
to t then s > t). 

However this method is not very practical because to be sure of 
termination. one has to check all rewrites. which usually form an infinite 
set. 

Partial orderings >. with the property that if s > t. then also 
f( '" s ... ) > f( ... t ... ) (the replacement property) are called monotonic. 
The following method. due to Manna and Ness [Manna70], eliminates the 
need for considering all rewrites s - t and is often used to prove 
termination: 

A term rewriting system is terminating if there exists a monotonic 
well-founded ordering> such that 1 > r. for each rewrite rule 1 -> r 
and for any substitution of terms for the variables of the rule. 

Monotonic well-founded orderings that are used to prove termination 
are. e.g .. the Knuth-Bendix ordering [Knuth70. Martin87] and orderings 
based on polynomial interpretations of the operation symbols [Manna70. 
Cherifa86]. 

In [Dershowitz79] the important notion of simplification ordering has 
been introduced. A monotonic partial ordering > is a simplification 
ordering if it possesses the subterm property. i.e. if for all terms t: 
f( '" t ... ) > t. Dershowitz proved that any simplification ordering is a 
monotonic well-founded ordering for rewriting. 

A lot of research has been done in constructing simplification orderings. 
Most of them are based on a partial ordering of the operation symbols. 
called a precedence. Examples of so called precedence orderings are the 
Path of Subterms Orderings (PSO) [Plaisted78]. the Recursive Path 
Ordering (RPO) [Dershowitz82] and its extension with Status (RPOS) 
[Kamin80]. the Recursive Decomposition Ordering (RDO) [Jouannaud82] 
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and its extension with Status (RDOS) [Lescanne841. and the path ordering 
of Kapur, Narendran and Sivakumar (KNS) [Kapur85]. All these orderings 
are closed under substitution. i.e. if s > t then s' > t'. with s' and t' being 
the result of applying the substitution CT to sand t respectively. for all 
terms sand t and for all substitutions CT. The relations between these 
orderings have been examined in [Rusinowitch85] and can be summarized 
in the following diagram (where each arrow means: is included in): 

RPO ... RPOS .... RDOS 

! 
RDO 

! 
KNS 

Fig. 4129 

A general and thorough survey of termination and orderings is given in 
[Dershowitz85]. 

In [Bevers87] we describe a generalization of RPOS. the Extended 
Recursive Path Ordering with Status (ERPOS). ERPOS contains a number 
of parameters to be chosen. such as the precedence and orderings < ss on 
sequences of terms. It has been proved that if these orderings < ss meet 
certain conditions. ERPOS is a simplification ordering and closed under 
substitution. In the same paper a special tailored ordering for term 
rewriting systems with constructors has been defined (the constructive 
ordering <c) by choosing appropriate orderings for <ss. It has been 
proved that RPOS is included in this ordering. but that <c is neither 
included in RDOS nor in KNS. 
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5. A Case Study: the Ferry Problem 
"An ounce of application is worth a ton of abstraction." 

Booker's law 

In most articles on algebraic specifications trivial examples like stacks, 
queues and sets are used [Goguen78, Guttag78]. As an unbounded stack 
does not exist in reality, it seems cooked up by the algebraicists because it 
suits their approach so well. Actually. examples like stacks. queues and 
sets are useful to illustrate the basic principles of algebraic specifications to 
those who want to have a first impression. As for programming in the 
small versus programming in the large. techniques and notations for 
designing small specifications do not necessarily apply to large ones. In 
Chapters 5 and 6. we deal with examples of a degree of complexity which 
is representative for large specifications. It is our intention to show that 
algebraic specifications. as described in the previous chapters. are 
appropriate not only for small examples but also for non-trivial case 
studies. 

In this chapter. the algebraic specification for the ferry problem is 
discussed. The specification is characterized by its high degree of 
parameterization. It is an example illustrating how a solution for a 
particular problem can be generalized to a solution for a class of similar 
problems. by using the technique of abstraction by parameterization. 
Originally. we started from the well-known riddle of the farmer. the wolf. 
the goat and the cabbage wanting to cross a river. This example is 
frequently used in the field of logic programming. see. e.g .. [Kowalski82]. 
Through adequate parameterization the riddle was generalized to a whole 
family of similar problems. called the ferry problem. Thus we can see the 
riddle of the farmer. the wolf. the goat and the cabbage as a particular 
instantiation. just like the riddle of the missionaries and the cannibals. At 
the end of this chapter. a specification of a search strategy for the ferry 
problem based on backtracking can be found. The idea here is that a 
problem solution may be described by several specifications each of a 
different level of abstraction. A design module may serve as specification 
for one person. but as implementation for another. 
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5.1 Informal Description of the Ferry Problem 

The Farmer, the Wolf, the Goat and the Cabbage 

A typical riddle in the field of artificial intelligence is the problem of the 
farmer. the wolf. the goat and the cabbage crossing a river. A farmer. a 
wolf. a goat and a cabbage want to cross a river for which they dispose of 
one small boat. The farmer can cross the river but he can only carry one 
passenger at the most. When the farmer is absent. the wolf may eat the 
goat and the goat may eat the cabbage. So the problem of how to cross the 
river safely arises. 

The Missionaries and the Cannibals 

Another famous riddle is that of the missionaries and cannibals. Three 
missionaries and three cannibals are at one bank of a river. Only a two
seater rowboat is at their disposal. Both the missionaries and cannibals can 
row. Usually the cannibals are friendly. but as soon as they are in the 
majority they become dangerous to the missionaries. How can they cross 
the river safely? 

This riddle can easily be generalized by allowing an arbitrary number 
of missionaries and cannibals. Of course. there must be at least as many 
missionaries as cannibals. A variant is obtained by introducing the 
restriction that only the missionaries can row. 

The Ferry Problem 

The ferry problem is obtained by generalizing the two previous problems 
to a more general problem using the technique of abstraction. The problem 
is how to transport a number of objects (human beings. animals or things) 
by means of a ferry between two banks of a river. The bank the ferry is 
located at originally. is called thisBank. The other bank is called 
yonderBank. Several constraints must be met and using the ferry is the 
only way to cross the river. 

The initial situation is defined by listing the objects which are originally 
at thisBank. and by listing the objects which are originally at yonderBank. 
The former list of objects is called initThisBankList. the latter one is called 
init YonderBankList. 
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The target situations are defined by listing objects which must 
eventually be at thisBank, and by listing objects which must eventually be 
at yonderBank. The former list of objects is called targetThisBankList, the 
latter one is called targetYonderBankList. Furthermore, 
targetFerryDestination determines the target destination of the ferry. 
Possible destinations are: thisBank, if the ferry must eventually be back at 
thisBank, yonderBank, if the ferry must eventually be at yonderBank, 
and thisOrYonderBank, if the destination of the ferry is irrelevant. 

A restriction is that the ferry must be operational whenever it crosses 
the river. It will be indicated by the boolean function operational. 
Moreover the combinations of objects on the ferry, on thisBank as well as 
on yonderBank must always be stable. They will respectively be indicated 
by the boolean functions stableFerry, stableThisBank and 
stable YonderBank. 

A solution is defined as a sequence of crossings starting from the initial 
situation and ending in a target situation, such that in each intermediate 
situation the combinations of objects on the ferry, on thisBank and on 
yonderBank are stable, and such that during each crossing the ferry is 
operational. 

5.2 Formal Specification of the Ferry Problem 

A formal specification of the ferry problem is given in Fig. 5/l. This is a 
high-level specification of a solution (the what) without giving an 
implementation (algorithm) to find this solution (the how). The 
specification of an implementation using backtracking will be given in 
Section 5.5. 

Notice that the scheme FerryProblem claims a requirement Object, a 
module that is equivalent to an instantiation of ListScheme (see Section 
4.10) and a requirement Constraints. ListScheme is instantiated by 
binding its (formal) requirement Item to Object. Since Object is itself a 
requirement of the scheme FerryProblem, it will be bound to an actual 
module when FerryProblem is instantiated. In this way, the requirement 
Item will be bound to that actual module. The requirement Constraints is 
an example of a requirement in which semantic properties are involved. 

module FerryDestination; 
import Bool, true, false from Bool; 
export all; 
sort FerryDestination; 
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constructors 
thisBank, yonderBank, thisOrYonderBank: -> FerryDestination; 

operation 
_ = _: FerryDestination· FerryDestination -> Bool; 

operation axioms 
thisBank = thisBank = true; yonderBank = yonderBank = true; 
thisOrYonderBank = thisOrYonderBank = true; 
thisBank = yonderBank = false; thisBank = thisOrYonderBank = false; 
yonderBank = thisBank = false; yonderBank = thisOrYonderBank = false; 
thisOrYonderBank ~ thisBank = false; thisOrYonderBank = yonderBank == false; 

end module FerryDestination; 

scheme FerryProblem [ 
requirement Object; 

import Bool, true, _ and _ from Bool, 
export all; 
sort Object; 
operations 

errObject: -> Object; -- needed for the instantiation of ListScheme 
_ = _: Object· Object -> Bool; 

declare ob, Obi, ob2, 01>,: Object; 
theorems 

ob = ob ~ true; 
obi = ob2 = ob2 = obi; 
( obi = ob2 ) and ( ob2 = ob3 ) ~ obi = ob3 true; 

end requirement Object; 

instantiate ListScheme rename List as ListOfObjects; 
with Item as Object, 

Item as Object, 
undefined as errObject, 

= as = • _ _ _ --1 

end instantiate ListScheme; 

requirement Constraints; 
import all from Bool, FerryDestination, ListOfObjects; 
export all; 
operations 

initThisBankList, initYonderBankList: -> ListOfObjects; -- initial situation 
targetThisBankList, targetYonderBankList: -> ListOfObjects; 

-- target situations . 
targetFerryDestination: -> FerryDestination; 
operational, stableFerry, stableThisBank, stableYonderBank: 

ListOfObjects -> Bool; -- restrictions 
declare obh, obh: Object; listl, list2, list3: ListOfObjects; . 
theorems 

( targetThisBankList & targetYonderBankList ) partof 
( initThisBankList & initYonderBankList) = true; -- feasibility 

-- the result of the operations operational, stableFerry, stableThisBank and 
-- stableYonderBank must be independent from the order of the objects 
-- of the given list 
operational( list3 & ( obh Ilist2 ) & ( obh llistt ) ) = 

operational( list3 & ( obh Ilist2 ) & ( obh llistl ) ); 
stableFerry( list3 & ( obh Ilist2 ) & (obh llistl ) ) = 

stableFerry( list3 & ( obh Ilist2 ) & ( obh llistl ) ); 
stableThisBank( list3 & ( obh Ilist2 ) & ( obh Ilistl ) ) = 
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]; 

stableThisBank( list3 & ( obh Ilist2 ) & ( obh llistl ) ); 
stableYonderBank( list3 & ( obh Ilist2 ) & ( obit llistl ) ) == 

stableYonderBank( list3 & ( obit Ilist2 ) & ( obh llistl ) ); 
end requirement Constraints; 

module IsSolution; 
import all from Bool, FerryDestination, ListOfObjects, Constraints; 
export all; 
sort CrossSequence; 
constructors 

initial: -> CrossSequence; -- denotes the initial situation 
cross: ListOfObjects • CrossSequence -> CrossSequence; 

-- after the given CrossSequence the ferry crosses the river with ListOfObjects 
-- aboard 

operations 
is Solution: CrossSequence -> Bool; -- indicates whether the CrossSequence is 

-- a solution of the ferry problem 
apt: CrossSequence -> Bool; -- indicates whether the CrossSequence does not 

-- violate the restrictions 
sameBankList, otherBankList: CrossSequence -> ListOfObjects; 

-- returns the ListOfObjects on the bank the ferry has arrived after 
-- CrossSequence, and on the other bank respectively 

thisBankList, yonderBankList: CrossSequence -> ListOfObjects; 
-- returns the ListOfObjects on this Bank and yonderBank respectively 
-- after CrossSequence 

ferryOver: CrossSequence -> Bool; -- indicates whether the ferry is at 
-- yonderBank 

declare seq, seqo: CrossSequence; list: ListOfObjects; 
operation axioms 

isSolution( seq ) = apt( seq ) and ( targetThisBankList partof thisBankList( seq) ) 
and (targetYonderBankList partof yonderBankList( seq)) and 
if ferryOver( seq) 

then not ( targetFerryDestination = thisBank ) 
else not ( targetFerryDestination = yonderBank ) 

end if; 
apt( seq ) == stableThisBank( thisBankList( seq) ) and 

stableYonderBank( yonderBankList( seq) ) and 
case seq of 

initial: true; 
cross( list, seqo ): ( list partof sameBankList( seqo ) ) and operational( list) 

and stableFerry( list) and apt( seqo ); 
end case; 

sameBankList( initial) = initThisBankList; 
sameBankList( cross( list, seq) ) = list & otherBankList( seq ); 
otherBankList( initial) = initYonderBankList; 
otherBankList( cross( list, seq) ) == remove( list, sameBankList( seq) ); 
thisBankList( seq ) = 

if f erryOver( seq) 
then otherBankList( seq) 
else sameBankList( seq) 

end if; 
yonderBankList( seq) == 

if f erryOver( seq) 
then sameBankList( seq) 
else otherBankList( seq) 

end if; 
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ferryOver( initial) = false; 
ferryOver( cross( list, seq) ) == not ferryOver( seq); 

end module IsSolution; 
end scheme FerryProblem; 

Fig. 5/1 

Refutation of a Common Misconception 

Programmers are often puzzled by the remarkable high degree of recursion 
of algebraic specifications. The ferry problem contains several such 
instances. One example is the operation apt which takes a sequence of 
crossings as its single argument and returns a boolean value. Students 
often raise the question why this function should be recursive: "After all, 
when executing the crossings, any unstable intermediate state would result in 
something being eaten. That could never be a solution as it would be detected 
in an earlier stage." 

The refutation obviously lies in the fact that nothing gets executed; 
there simply do not exist any 'earlier stages' as there is no inherent time 
concept. The operation apt is defined on objects of sort CrossSequence. 
Thanks to the mathematical foundation of algebraic specifications (see 
Chapter 2). the second operation axiom of Fig. 5/1 defines for which 
sequences of crossings the operation apt yields true or false. How an apt 
sequence is obtained or how the operation apt may be implemented is 
irrelevant at this level of abstraction. 

It is true that rapid prototyping based on the direct implementation of 
Fig. 5/1 is inefficient. but that has no influence on the mathematical 
definition of the abstract data types. Later, when implementing a search 
strategy. one obviously may (and should) use the fact that any sequence so 
far constructed is apt in order to avoid extraneous checks. but this pertains 
to the implementation effort and obviously not to the high level 
specification. 

5.3 The Farmer, the Wolf, the Goat and the 
Cabbage 

The riddle of the farmer. the wolf. the goat and the cabbage is a special 
case (instantiation) of the ferry problem. see Fig. 5/2. 
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module FarmerWolfGoatCabbage; 
import Bool, true, false from Bool; 
export all; 
sort Thing; 
constructors 

farmer, wolf, goat, cabbage: -> Thing; 
operation 

_ = _: Thing * Thing -> Bool; 
operation axioms 

farmer = farmer == true; wolf = wolf == true; 
goat = goat == true; cabbage = cabbage == true; 
farmer = wolf == false; farmer = goat == false; farmer = cabbage == false; 
wolf = farmer = false; wolf = goat = false; wolf = cabbage = false; 
goat = farmer = false; goat = wolf == false; goat = cabbage = false; 
cabbage = farmer = false; cabbage = wolf = false; cabbage = goat = false; 

end module FarmerWolfGoatCabbage; 

instantiate ListScheme rename List as ListOfThings; -- see Fig. 4/6 
with Item as FarmerWolfGoatCabbage; 

Item as Thing, 
undefined as farmer, -- arbitrary 
__ as_=....; 

end instantiate ListScheme; 

module Conditions; 

Chap. 5 

import all from Bool, FerryDestination, FarmerWolfGoatCabbage, ListOfThings; 
export all; 
operations 

initThisBankList, initYonderBankList: -> ListOfThings; -- initial situation 
targetThisBankList, targetYonderBankList: -> ListOfThings; -- target situations 
targetFerryDestination: -> FerryDestination; 
loadable: ListOfThings -> Bool; -- the ferry can only ship a limited quantity of 
-- freight 

capable: ListOfThings -> Bool; -- not every Thing is capable of steering the ferry 
navigable: ListOfThings -> Bool; -- the ferry is navigable if its freight is 

-- loadable and capable 
stable: ListOfThings -> Bool; 

declare th, th1, th2, th3: Thing; list: ListOfThings; 
operation axioms 

initThisBankList = cabbage' goat' wolf' farmer' nil; 
initYonderBankList == nil; 
targetThisBankList == nil; 
targetYonderBankList = cabbage' goat' wolf' farmer' nil; 
targetFerryDestination = yonderBank; 
loadable( nil ) == true; 
loadable( th , nil ) == true; 
loadable( th2 , thl , nil ) == true; 
loadable( th3 , th2 , th1 'list) == false; 
capable( list) == farmer isin list; 
navigable( list) = loadable( list) and capable( list ); 
stable( list) = ( farmer isin list) or ( not ( goat isin list and cabbage isin list) and 

not ( goat isin list and wolf isin list) ); 
end module Conditions; 

instantiate FerryProblem; 
with Object as FarmerWolfGoatCabbage, 
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Object as Thing, errObject as farmer -- arbitrary --, 
= as_=_; 

with ListOfObjects as ListOfThings; 
with Constraints as Conditions, 

initThisBankList as initThisBankList, initYonderBankList as initYonderBankList, 
targetThisBankList as targetThisBankList, 
targetYonderBankList as targetYonderBankList, 
targetFerryDestination as targetFerryDestination, 
operational as navigable, stableFerry as stable, 
stableThisBank as stable, stableYonderBank as stable; 

end instantiate FerryProblem; 

Fig. SI2 

5.4 The Missionaries and the Cannibals 

The generalized riddle of the missionaries and cannibals as described in 
Section 5.1 will be specified as an instantiation of the ferry problem, see 
Fig. 5/3. 

module Person; 
import Bool, true, false from Boo1; 
export all; 
sort Person; 
constructors 

missionary, cannibal: -> Person; 
operation 

_ = _: Person * Person - > Bool; 
operation axioms 

missionary = missionary = true; cannibal = cannibal == true; 
missionary = cannibal == false; cannibal = missionary = false; 

end module Person; 

instantiate ListScheme rename List as ListOfPersons; 
with Item as Person, 

Item as Person, 
undefined as missionary, -- arbitrary 
__ as_=.-J 

end instantiate ListScheme; 

scheme RiddleMissionariesAndCannibals [ 
requirement Numbers; 

import all from Bool, Nat; 
export all; 
operations 

numberOfMissionaries, numberOfCannibals: -> Nat; 
theorem 
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]; 

numberOfCannibals ~ numberOfMissionaries = true; 
end requirement Numbers; 

module Conditions; 
import all from Bool, Nat, FerryDestination, Person, ListOfPersons, Numbers; 
export all; 
operations 

initThisBankList, initYonderBankList: -> ListOfPersons; -- initial situation 
targetThisBankList, targetYonderBankList: -> ListOfPersons; -- target situations 
targetFerryDestination: -> FerryDestination; 
loadable, capable, navigable, stable: ListOfPersons -> Bool; -- restrictions 
create: Nat· Person -> ListOfPersons; -- creates a ListOfPersons built up 

-- of Nat occurrences of Person 
noMajorityOfCannibals: ListOfPersons -> Bool; -- indicates whether 

-- there are at least as many missionaries as cannibals 
declare pers, persl> pers2, pers3: Person; list: ListOfPersons; n: Nat; 
operation axioms 

initThisBankList == create( numberOfMissionaries, missionary) & 
create( numberOfCannibals, cannibal); 

initYonderBankList == nil; 
targetThisBankList = nil; 
targetYonderBankList = create( numberOfMissionaries, missionary) & 

create( numberOfCannibals, cannibal); 
targetFerryDestination = yonderBank; 
loadable( nil ) == true; 
loadable( pers I nil ) == true; 
loadable( pers2 I persl I nil ) = true; 
loadable( pers3 I pers2 I persl I list ) = false; 
capable( list) == not permutation( list, nil ); 
navigable( list) = loadable( list) and capable( list ); 
stable( list) = 

if missionary isin list 
then noMajorityOfCannibals( list) 
else true 

end if; 
create( zero, pers ) == nil; 
create( succ( n), pers ) == pers I create( n, pers ); 
noMajorityOfCannibals( list) = 

if cannibal isin list 
then 

if missionary isin list 
then noMajorityOfCannibals( remove( missionary I cannibal I nil, list) ) 
else false 

end if 
else true 

end if; 
end module Conditions; 

instantiate FerryProblem; 
with Object as Person, 

Object as Person, errObject as missionary -- arbitrary --, 
__ BB_=_; 

with ListOfObjects as ListOfPersons; 
with Constraints as Conditions, 

initThisBankList as initThisBankList, initYonderBankList as initYonderBankList, 
targetThisBankList as targetThisBankList, 
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targetYonderBankList as targetYonderBankList, 
targetFerryDestination as targetFerryDestination, 
operational as navigable, stableFerry as stable, 
stableThisBank as stable, stableYonderBank as stable; 

end instantiate FerryProblem; 
end scheme RiddleMissionariesAndCannibals; 

Fig. 5/3 

The variant in which only the missionaries can row, can be obtained by 
modifying the specification of the operation capable in the following way: 

capable( list) == missionary isin list: 

As an example the scheme given above, is instantiated with three 
missionaries and three cannibals, see Fig. 5/4. 

instantiate RiddleMissionariesAndCannibals; 
with Number as Nat, 

numberOfMissionaries as 3, 
numberOfCannibals as 3; 

end instantiate RiddleMissionariesAndCannibals; 

Fig. 5/4 

5.5 Specification of a Search Strategy 

In Fig. 5/5 an implementation of the ferry problem is specified by means 
of a search strategy based on backtracking. The modules of Fig. 5/5 have 
to be added to the scheme FerryProblem of Fig. 5/1. 

-- Auxiliary structure List of ListOfObjects 
instantiate ListScheme 

rename 
List as ListOfListsOfObjects, 
nil as nilL, 
_1_as_1L-J 
head as headL, 
tail as tailL, 
_&_as_&L-J 
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delete as deleteL, 
remove as removeL, 
_ isin _ as _ isinL ...J 

_ partof _ as _ partofL ...J 

permutation as permutationL; 
with Item as ListOfObjects, 

Item as ListOfObjects, 
undefined as nil, 
_ = _ as permutation; 

end instantiate ListScheme; 

module ListSubLists; 
import all from Object, ListOfObjects, ListOfListsOfObjects; 
export all; 
operations 

listSubLists: ListOfObjects -> ListOfListsOfObjects; 
-- lists all ListOfObjects that are partof the given ListOfObjects 

addL: Object· ListOfListsOfObjects -> ListOfListsOfObjects; 
-- adds Object to every member of ListOfListsOfObjects 

declare obj: Object; list: ListOfObjects; listL: ListOfListsOfObjects; 
operation axioms 

listSubLists( nil ) """ nillL nilL; 

Chap. 5 

listSubLists( obj I list ) == addU obj, listSubLists( list) ) &L listSubLists( list ); 
addLe obj, nilL ) = nilL; 
addLe obj, list IL listL ) = ( obj I list ) IL addLe obj, listL ); 

end module ListSubLists; 

module Backtrack; 
Import all from Bool, IsSolution, ListOfObjects, ListOfListsOfObjects, ListSubLists; 
export aU; 
sort ExtendedCrossSequence; -- simulates an extension of the sort Cross Sequence 

-- with the exception unsolvable 
constructors 

unsolvable: -.> ExtendedCrossSequenee; 
solvedThru: CrossSequenee -> ExtendedCrossSequence; 

operations 
solution: -> ExtendedCrossSequence; -- returns a solution to the ferry problem 
generate: CrossSequence -> ExtendedCrossSequence; -- generates a solution, 

-- if any, starting with CrossSequence 
try: CrossSequence * ListOfListsOfObjects -> ExtendedCrossSequence; 

-- tries to generate a solution starting from CrossSequence by crossing the river 
-- with a member of ListOfListsOfObjects aboard 

circular: CrossSequence -> Bool; -- indicates whether the CrossSequence has 
-- passed through two identical situations 

occurred: ListOfObjects * CrossSequence -> Bool; -- indicates whether the 
-- situation with ListOfObjects on the bank the ferry now is located, 
-- has occurred before 

isunsolvable: ExtendedCrossSequence -> Bool; 
declare seq: CrossSequence; list, listl, list2, list3: ListOfObjects; 

listL: ListOfListsOfObjects; 
operation axioms 

solution = generate( initial); 
generate( seq) == 

if isSolution( seq) 
then solvedThru( seq ) 
else 

If apt( seq) and not circular( seq) 
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then try( seq, listSubLists( sameBankList( seq) ) ) 
else unsolvable 

end if 
end if; 

try( seq, nilL) == unsolvable; 
try( seq, list IL listL ) = 
if isunsolvable( generate( cross( list, seq) ) ) 

then try( seq, listL ) 
else generate( cross( list, seq) ) 

end if; 
circular( initial) == false; 
circular( cross( list, seq) ) == occurred( sameBankList( cross( list, seq) ), 

cross( list, seq) ) or circular( seq ); 
occurred( list, initial) == false; 
occurred( listl, cross( list2, initial) ) == false; 
occurred( listl> cross( list2, cross( list3 , seq) ) ) = 

permutation( listl> sameBankList( seq) ) or occurred( listl> seq ); 
isunsolvable( unsolvable) = true; 
isunsolvable( solvedThru( seq) ) == false; 

end module Backtrack; 

Fig. SIS 

5.6 Conclusion 

The ferry problem was a nice example of a parameterized specification. 
Building parameterized specifications requires considerably more time, but 
this additional effort is justified by the obtained reusability of the 
specifications. A distinction was made between the specification of a 
solution (the what), in Section 5.2, and the specification of the 
implementation (the how), in Section 5.5. If a mathematician ever finds an 
analytic formula to obtain a solution of the ferry problem, we will only 
have to replace Section 5.5, and not Section 5.2. 

In [Warren74, Warren76] a planning problem, called Warplan, is given. 
Warplan can be considered as an even more general problem than the Ferry 
Problem. The main difference is that no requirements for the data of 
Warplan are given. The coherence of the data is the responsibility of the 
user [Kluzniak85]. Furthermore, instantiating Warplan requires 
substantially more work than instantiating the Ferry Problem. 
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6. A Case Study: the Mini-PABX 
"Alexander Graham Bell is alive and well in New York. 

and still waiting for a dial tone." 
/usr/gar.nes/Jortune 

One of the most interesting case studies we made is the formal specification 
of a substantial part of a call handling system. the lIT 5400 BeS (Business 
Communication System) [Be1l85b]. The ITT 5400 BCS is a modern Private 
Automatic Branch Exchange (PABX for short). which has been developed 
and produced by Bell Telephone Mfg. Co. Geel (Belgium) in the context of 
ITT's Office 2000 concept. Because voice communication accounts for some 
80% of all office communications [Be1l85a]. the ITT 5400 BCS is supplied 
with a wide range of features. These features considerably improve the 
flow of information. provide more ease of operation and save time and 
costs. The range of features for voice communications includes extension 
features (i.e. features for the ordinary users). operator features and system 
features. 

In [Goovaers86] a first attempt was made to describe several extension 
features of the ITT 5400 BCS in a formal way. The whole PABX was 
designed as a single monolithic data structure. This design decision 
resulted in a specification with poor modularity. readability and 
extendibility. Poor extendibility means that the number of telephone 
states grew out of control very rapidly when new features were added. 
This phenomenon is called state explosion in [Jacobs86]. 

Having learned from this experiment J. De Man (Bell Telephone Mfg. 
Co. Antwerp) suggested to use a more object-oriented approach. inspired 
by state transition models [Sunshine82] used for the specifications of 
protocols. In [Vergauwen87] we have developed such an object-oriented 
design method and we have used it for the specification of the ITT 5400 
BCS. The resulting specification is highly modular and adaptable and 
therefore more readable. The so-called state explosion has been mastered 
in an elegant way. In the specification abstraction is made from any 
hardware aspect of the P ABX. in contrast with [Biebow85] where a 
component of a telephone system. in particular a 'switching module'. is 
specified. 

Because of the length of this industrial case study. we have extracted a 
mini-PABX from the PABX. This mini-PABX provides only the two-party 
voice calls and the enquiry feature of the ITT 5400 BCS. 
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6.1 Object-Oriented Design Method 

In this section the design method of the P ABX is explained. We call this 
method object-oriented in the sense that the various logical objects are 
identified and specified. Each (logical) object is always in a definite state. 
Furthermore. the objects may communicate with each other by sending 
messages. When an object receives a message. the state of the object may 
be changed and the object in turn may send messages to other objects. This 
will be explained and illustrated later on. 

Within the world of our mini-P ABX. we can distinguish two sorts of 
logical objects: the telephonic apparatuses. abbreviated phones. and the 
users of the mini-PABX. The former are part of the mini-PABX whereas 
the latter are not. We are not interested in the state of the users but only 
in the messages they send to the phones. The word message must be 
interpreted in its broadest sense. Examples of messages sent by users are: 

• a message for terminating a call: 

onHook: - > UserMessage: 

• a message for calling someone: 

dialCode: Code -> UserMessage: 

• a message for enquiring: 

button: -> UserMessage: 

Phones cannot send messages to users. We assume that the users can 
inspect the states of their phones. Phones are characterized by a state. An 
example is shown in Fig. 6/1. where phone A is in state C( dialTone ). 

Fig. 6/1 

Not only users may send messages to phones. phones may also send 
messages to each other. 
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Assume that the user of phone A sends the message U( dialCode( 
phoneCode( B ) ) ) to phone A, Le. the user of phone A dials the number of 
phone B. When phone A receives this message, two actions will happen: 

• The state of phone A will be changed to C( callWaiting( B ) ) . 

• Phone A will send the message C( callRequest( A ) ) to phone B. In 
general, an object may send several messages to several objects. 

This is graphically shown in Fig. 6/2. Notice that a graphical 
representation of a phone contains its name and its state, messages are 
represented by labelled full arrows, and when the state of a phone is 
changed, it is represented with the old as well as with the new state 
connected by a dotted arrow. Furthermore, the actions (of changing states 
and sending messages) are chronologically numbered. 

Fig. 612 

I 
I 
I 

\0 
I 

U( dialCode( phoneCode( B ) ) ) 
• 

C( callRequest( A )) 
• 

In a similar way, the state of phone B may be changed when it receives 
the message from phone A and phone B may send messages to other objects. 
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How the state of a phone is changed when it receives a phone message, is 
specified with the operation next, see Fig. 6/3. The sort Phone consists of 
the Cartesian product of sort PhoneIdentity with several sorts indicating 
the state of a phone. The sort PhoneMessage consists of the messages that 
can be send to a phone (examples of phone messages are the message 
C( callRequest( A ) ) and the user messages given above). 

sort Phone == PhoneIdentity * ... ; 

sort PhoneMessage; 

operation 
next: PhoneMessage * Phone - > Phone; 

Fig. 6/3 

Which phone messages are send to which phones when a phone receives 
a phone message is specified by the operation out, see Fig. 6/4. The sort 
ListOfMessages is a list of message pairs. A message pair is a phone 
message together with its destination. 

sort MessagePair; 
constructor 

send _ toPhone _: PhoneMessage * PhoneIdentity -> MessagePair; 

instantiate ListScheme rename List as ListOfMessages; -- see Fig. 4/6 
with .... 

Item as MessagePair; 
end instantiate ListOfScheme; 

operation 
out: PhoneMessage * Phone -> ListOfMessages; 

Fig. 6/4 
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6.2 Modularity 

Because of the complexity of our case study. modularity is a necessary 
condition for obtaining a readable and extendible specification. The 
specification of the mini-PABX contains a two-level structure of 
modularity. The first level is related to the partitioning into modules as it 
was done in the examples of the previous chapters. The second level of 
modularity is related to the stepwise extension of the mini-PABX. We 
start with the base case: a two-party voice call. In a second step. the 
enquiry feature is added. Finally. the user actions are studied. With each 
new feature corresponds a new step. In the specification of the ITT 5400 
BCS [Vergauwen87]. we used thirteen steps. Notice that the user actions 
are treated in a separate step since user actions may be related to various 
features. For instance. going on-hook may terminate a two-party voice 
call as well as an enquiry call. 

This modularity based on the various features is reflected in the use of 
the object-oriented mechanism as well. In the previous section we 
explained that the messages that can be sent to a phone are defined by sort 
PhoneMessage. Instead of defining sort PhoneMessage by directly 
enumerating the various messages that can be received by a phone. we 
define it as a union of a number of sorts corresponding to the messages 
introduced for the various features. see Fig. 6/5. Sort CalIMessage 
specifies the messages concerning the two-party voice calls. Sort 
UserMessage specifies the messages that can be sent by the users. Each 
time a new feature is introduced. a new module defining the specific 
messages sent to phones will be specified and the module PhoneMessages 
will be adapted so that sort PhoneMessage contains the new messages as 
well. The great advantage of this method is that the other modules 
defining messages of the previous features remain unchanged. 

module CallMessages; 

sort CallMessage; 
constructors 

callRequest: Phoneldentity -> Cal1Message; 

end module CallMessages; 

module UserMessages; 

sort UserMessage; 
constructors 

dialCode: Code -> UserMessage; 
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end module UserMessages; 

module PhoneMessages; 

sort PhoneMessage; 
constructors 

C: CallMessage - > PhoneMessage; 
U: UserMessage -> PhoneMessage; 

end module PhoneMessages; 

Fig. 6/5 
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Analogously, the operation next of Fig. 6/3 is defined as the union of a 
number of operations corresponding to the messages of the various 
features, see Fig. 6/6. 

module NextCallPhone; 

operation 
next: Ca1lMessage • Phone - > Phone; 

end module NextCallPhone; 

module NextUserPhone; 

operation 
next: UserMessage· Phone -> Phone; 

end module NextUserPhone; 

module NextPhone; 

operation 
next: PhoneMessage • Phone - > Phone; 

declare callmsg: CallMessage; usermsg: UserMessage; ph: Phone; 
operation axioms 

next( C( callmsg), ph) = NextCallPhone.next( callmsg, ph); 
next( U( usermsg ), ph) = NextUserPhone.next( usermsg, ph ); 

end module NextPhone; 

Fig. 6/6 
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Analogously. the operation out of Fig. 6/4 is defined as the union of a 
number of operations corresponding with the messages of the various 
features. see Fig. 6/7. 

module OutCallListOfMessages; 

operation 
out: CallMessage * Phone -> ListOfMessages; 

end module OutCallListOfMessages; 

module OutUserListOfMessages; 

operation 
out: UserMessage * Phone -> ListOfMessages; 

end module OutUserListOfMessages; 

module OutPhone; 

operation 
out: PhoneMessage * Phone -> ListOfMessages; 

declare callmsg: CallMessage; usermsg: UserMessage; ph: Phone; 
operation axioms 

out( C( callmsg ). ph) == OutCallListOfMessages.out( callmsg. ph); 
out( U( usermsg). ph) == OutUserListOfMessages.out( usermsg. ph); 

end module OutPhone; 

Fig. 617 

6.3 The Abstract Data Type Phone 

Our mini-PABX has only one sort of logical objects. i.e. the sort Phone. 
Every phone has an identity. This identity may be a five-digit number. a 
room identification. the name of the subscriber. a colour .... The concrete 
definition of the identity is not relevant for the specification of our mini
PABX. Therefore. the specification of the mini-PABX will be 
parameterized with the requirement Phoneldentity. where a sort 
Phoneldentity. an object errPhoneldentity for error handling and a classical 
equality operation are required. see Fig. 6/8. 
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req uiremen t Phonelden tity; 
import Bool. true. _ and _ from Bool; 
export all; 
sort Phoneldentity; 
operations 

errPhoneldentity: -> Phoneldentity; 
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_ = _: Phoneldentity * Phoneldentity -> Bool; 
declare i. i1 • i2. i3: Phoneldentity; 
theorems 

i = i == true; 
il = i2 == i2 = i1; 

0 1 = i2) and O2 = i3) => 0 1 = i3) == true; 
end requirement Phoneldentity; 

Fig. 6/8 

Besides an identity. a phone has also a phonestate. The modularity 
obtained by stepwise extending the mini-PABX is reflected in the 
definition of the sort Phone in two ways. Firstly. the sort phone is a 
Cartesian product of sort Identity and sort PhoneState. Each time a new 
feature is introduced. the Cartesian product may be extended with new 
characteristics (e.g .. PhoneMode when the enquiry feature is introduced. 
see Section 6.9). Secondly. sort PhoneState is a union of sorts 
corresponding with the states Cif any) introduced for the various features. 

The skeleton for the definition of the abstract data type phone is given 
in Fig. 6/9. 

module CallStates; 

sort CallState; 
constructors 

dialTone: -> CallState; 
callWaiting: Phoneldentity -> CallState; 

end module CallStates; 

module PhoneStates; 

sort PhoneState; 
constructors 

C: CallState -> PhoneState; -- Notice that this constructor C is 
-- distinct from the C of module PhoneMessages (overloading). 

end module PhoneStates; 

module Phone; 
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sort Phone == Phoneldentity • PhoneState • PhoneMode * ... 

end module Phone; 

Fig. 6/9 

6.4 Error Handling 

A designer may build a specification so that certain situations cannot 
occur. For example. in Section 6.8 a phone will receive the message 
C( callAccepted ) only if it is in the state C( callWaiting( _ )). Because 
of the completeness constraints. the operations next and out must also be 
defined for a phone in another state receiving this message. Instead of 
writing an arbitrary term. we will write error. Error may be interpreted 
as an overloaded nullary operation that is propagated by the other 
operations. 

Because of physical limitations of the classical telephonic apparatuses. 
certain combinations of user actions are impossible. E.g .. it is impossible to 
hang up twice without picking up the receiver. We will abstract from 
these physical limitations of phones. Indeed. we may imagine apparatuses 
where going on-hook is performed by operating a button. With such 
phones. hanging up twice without going off-hook is simply done by 
pushing the (on-hook) button twice. 

Erroneous actions performed by users are treated in the same object
oriented and modular way as the not-erroneous actions. E.g .. in Section 6.8 
dialling a wrong number is discussed. 

6.5 The Abstract Data Type Mini-PABX 

It is obvious that our mini-PABX will contain several phones. Therefore. 
sort PhonePool is defined in Fig. 6/10 by instantiating scheme 
ObjectPoolScheme. ObjectPoolScheme defines a pool of objects (second 
requirement of the scheme) where each object has an identity (first 
requirement of the scheme). The constructor emptyObjectPool creates an 
empty pool. whereas the constructor addObject adds the given object to the 
given pool. The information about an object may be overridden by means 
of the operation update. The operation select selects the object with the 
given identity in the given pool. The operation isIn checks whether the 
given pool contains an object with the given identity. 
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scheme ObjectPoolScheme [ 

]: 

requirement Identity; 
import Bool, true, _ and _ from Bool; 
export all; . 
sort Identity; 
operation 

_ = _: Identity * Identity - > Bool; 
declare i, iI, i2, is: Identity; 
theorems 

i = i -== true; 
il = i2 == i2 = i1; 
Ci1 = i2) and Ci2 = is) ~ Ci1 = is) == true; 

end requirement Identity; 

requirement Object; 
import Identity from Identity; 
export all; 
sort Object; 
operations 

errObject: -> Object; 
identityOf _: Object -> Identity; 

end requirement Object; 

module ObjectPool: 
import Object, errObject, identityOf_from Object: 

Bool, true, false, not from Bool; Identity, _ = _ from Identity: 
export ObjectPool, emptyObjectPool, addObject, update, select, isIn, remove: 
sort ObjectPool; 
constructors 

emptyObjectPool: -> ObjectPool: 
addObject: ObjectPool * Object - > ObjectPool; 

operations 
update: ObjectPool * Object - > ObjectPool: 
select: ObjectPool * Identity - > Object; 
remove: ObjectPool* Identity -> ObjectPool; 
isIn: ObjectPool * Identity -> Bool; 

declare obj, obh, obh: Object: id: Identity: pI: ObjectPool: 
constructor axioms 

not (identityOf obh = idehtityOf obh) ~ 
addObject( addObjectC pI, obit ), obh ) == 
addObjectC addObjectC pI, obh ), obit ): 

(identityOf obit = identityOf obh) ~ 
addObjectC addObjectC pI, obit), obh ) ) -
addObjectC pI, Obj2 ): 

operation axioms 
update( emptyObjectPool, obj ) == error: 
update( addObjectC pI, obit ), obh ) == 
if identityOf obit = identityOf obh 

then addObjectC pI, obh ) 
else addObjectC update( pI, obh ), obit ) 

end if; 
select( emptyObjectPool, id ) == errObject; 
selectCaddObject( pI, obj ), id ) == 
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if identityOf obj = id 
then obj 
else select( pI, id ) 

end if; 
remove( emptyObjectPool, id) == error; 
remove( addObject( pI, obj ), id) == 

if identityOf obj = id 
then pI 
else addObject( remove( pI, id ), obj) 

end if; 
isIn( emptyObjectPool, id ) = false; 
isIn( addObject( pI, obj ), id) == 
if identityOf obj = id 

then true 
else isIn( pI, id ) 

end if; 
end module ObjectPool; 

end scheme ObjectPoolScheme; 

instantiate ObjectPoolScheme 
rename ObjectPool as PhonePool, emptyObjectPool as emptyPhonePool, 

addObject as addPhone; 
with Object as Phone, 

Object as Phone, 
errObject as errPhone, 
identityOf _ as phoneIdentityOf ~ 

with Identity as PhoneIdentity, 
Identity as Phoneldentity. 
__ as_=~ 

end instantiate ObjectPoolScheme; 

Fig. 6/10 

In [Vergauwen87] the sort PABX is defined as 

sort PABX == PhonePool * BookingOffice * WakeUpService * MeetingPool; 

Fig. 6/11 

Chap. 6 

Sorts BookingOffice. WakeUpService and MeetingPool are respectively 
related to the booking feature. the wake up feature and the conference 
feature. This reflects the modularity obtained by stepwise extending the 
mini-PABX. Each time a new feature is added, the Cartesian product may 
be extended. In our mini-P ABX we will only need sort PhonePool. see Fig. 
6/12. 
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module MiniP ABX; 
import PhonePool from PhonePool; 
export all; 
sort MiniP ABX == PhonePool; 

end module MiniP ABX; 

Fig. 6/12 
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6.6 The Scheduling of the Messages 

Assume that a user sends a message to his phone (e.g .• he hangs up. i.e. he 
sends the user message onHook). As explained in Section 6.1. his phone 
may be changed of state and his phone may send messages to other phones. 
These phones in turn may be changed of states and send messages to other 
phones. and so on. The state of the mini-P ABX is stable when the whole 
chain of receiving and sending has been finished. This transformation of 
the mini-PABX activated by a single message can be described in a formal 
way by means of the operation transform. The expression transform( msg. 
oldMiniPABX ) denotes the new stable state of the mini-PABX. obtained 
after sending the message msg to the mini-PABX that was in state 
oldMiniP ABX. 

The operation transform is specified in module MessageScheduler. see 
Fig. 6/13. using the hidden operation hiddenTransform. The operation 
hiddenTransform has a list of messages and a mini-PABX as arguments 
and returns a transformed. stable mini-PABX. obtained by sending the 
given and activated messages one by one to the mini-P ABX. 

module MessageScheduler; 
import all from MiniP ABX; all from PhonePool; 

Phoneldentity from Phoneldentity; Phone from Phone; 
next from NextPhone; out from OutPhone; all from ListOfMessages; 
all from MessagePairs; PhoneMessage from PhoneMessages; 

export transform; 
operations 

transform: MessagePair * MiniP ABX - > MiniP ABX; 
hiddenTransform: ListOfMessages * MiniPABX -> MiniPABX; 

declare pabx. newpabx: MiniPABX; msg: MessagePair; 
listofmsg. outmsg: ListOfMessages; phmsg: PhoneMessage; 
ph, newph: Phone; phid: Phoneldentity; phpool: PhonePool; 

operation axioms 
transform( msg, pabx ) == hiddenTransform( msg I nil, pabx ); 
hiddenTransform( nil, pabx) = pabx; 
hiddenTransform( send phmsg toPhone phid llistofmsg, pabx) == 
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let phpool = phonePoolOf pabx; 
ph = select( phpool. phid ); 
newph = NextPhone.next( phmsg. ph ); 
newpabx = update( pabx. newph ); 
outmsg == OutPhone.out( phmsg. ph ); 

in 
hiddenTransform( outmsg & listofmsg. newpabx ) 

end let; 
end module MessageScheduler; 

Fig. 6/13 

6.7 Skeleton of the Mini-PABX 

Chap. 6 

In Fig. 6/14 the concepts and structures discussed in the previous sections 
are combined into the skeleton of the mini-PABX. 

IIICheme MiniP ABX [ 

for every sort Object of logical objects of the mini-PABX 
that re uires an identit • 

]; 

I a data module requiring a sort Objectldentity I 
requirement Phoneldentity; 

• •• -- see Fig. 6/8 
end requirement Phoneldentity; 

for every sort Object of logical objects of the mini-PABX. 
the followin modules are defined: 

I a data module defining the sort Object I 
module Phone; 

• •• -- see Fig. 6/9 
end module Phone; 

I a data module defining the sort ObjectMessage I 
module PhoneMessages; 

• •• -- see Fig. 6/5 
end module PhoneMes sages; 

I a functional module defining the operation next I 
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module NextPhone; 
• " -- see Fig. 6/6 

end module NextPhone; 

I a functional module defining the operation out I 
module OutPhone; 

• •• -- see Fig. 617 
end module OutPhone; 

"the mini-PABX and the MessageScheduler 1\ 

I a data module defining the sort MiniP ABX I 
module MiniP ABX; 

• •• -- see Fig. 6/12 
end module MiniP ABX; 

I data modules defining the sorts MessagePair and ListOfMessages I 
module MessagePairs; 

• " -- see Fig. 6/4 
end module MessagePairs; 

module ListOfMessages; 
• •• -- see Fig. 6/4 

end module ListOfMessages; 

I a functional module defining the operation transform I 
module MessageScheduler; 

• •• -- see Fig. 6/13 
end module MessageScheduler; 

end scheme miniP ABX; 

Fig. 6/14 

6.8 A Two-Party Voice Call 

A two-party voice call [Steegmans84] is the simplest call type which a user 
may make to and receive from another party. without intervention of a 
third party. A user may go off-hook and dial the number of the wanted 
party. If the called phone is busy. he receives the busy tone. If the called 
phone is free. he receives the ring tone and the called phone starts ringing. 
When the called party goes off-hook. the two-party voice call has been 
realized. The call is terminated as soon as one of both goes on-hook. 
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6.8.1 The Module Plwne 

In Fig. 6/15 the module Phone is defined as explained in Section 6.3. We 
remember that sort PhoneState is a union of sort CallState with other sorts 
that will be added when new features of the mini-PABX are defined. 

module CallStates; 
import Phoneldentity from Phoneldentity; 
export all; 
sort CallState; 
constructors 

idle: -> CallState; 
ringing: Phoneldentity -> CallState; 
dialTone: -> CallState; 
callWaiting: Phoneldentity -> CallState; 
busyTone: Phoneldentity -> CallState; 
ringTone: Phoneldentity -> CallState; 
errorTone: -> CallState; 
connected: Phoneldentity -> CallState; 
terminating: - > CallState; 

end module CallStates; 

module PhoneStates; 
import CallState from CallStates; 
export all; 
sort PhoneState; 
constructor 

C: CallState -> PhoneState; 
end module PhoneStates; 

module Phone; 
import Phoneldentity, errPhoneldentity from Phoneldentity; 

PhoneState, C from PhoneStates; idle from CallStates; 
export all except C.J ..J, _[ _I phoneldentity]; 
sort Phone == Phoneldentity • PhoneState 

rename phoneldentityOf _ as identityOf ....; 
operations 

newPhone: Phoneldentity -> Phone; 
errPhone: -> Phone; 

declare id: Phoneldentity; 
operation axioms 

newPhone( id ) = ( id, C( idle) ); 
errPhone = ( errPhoneldentity, C( idle) ); 

end module Phone; 

Fig. 6/15 
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6.8.2 The Module PhoneMessages 

A call connection from phone A to phone B has been established if and only 
if: 

• phoneStateOf phone( A) == C( ringTone( B ) ); 

• phoneStateOf phone( B ) == C( ringing( A ) ); 

A talk connection between phone A and phone B has been established if 
and only if: 

• phoneStateOf phone( A ) == C( connected( B ) ); 

• phoneStateOf phone( B) = C( connected( A) ); 

The messages that will be introduced for specifying two-party voice 
calls can be partitioned into four classes: 

• messages for establishing a call connection. 

• messages for terminating a call connection. 

• messages for transforming a call connection into a talk connection. 

• messages for terminating a talk connection. 

If phone A wants to realize a two-party voice call to phone B. it must 
establish a call connection first. which can be transformed into a talk 
connection. 

Establishing a Call Connection 

For establishing a call connection from phone A to phone B. phone A sends 
the message C( callRequest( A ) ) to phone B. If phone B accepts this 
request. it answers with the message C( callAccepted). If phone B does 
not accept. e.g .• because it is busy. it sends the message C( callRefused ) to 
phone A. These two scenarios are graphically illustrated in Fig. 6/16 and 
6/17. 
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C( callRequest( A ) ) :~ : ~ 
.. . 

----'---0-'-1 --'--':....:.....--. C( idle) 

18 

Fig. 6/16 
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Fig. 6/17 
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The reader may wonder what happens when the user of phone A dials a 
wrong nummer. i.e. phone A sends the message C( callRequest( A) ) to a 
phone that is not in the phone pool. According to the specification of the 
operation select in Fig. 6/10. the message C( callRequest( A ) ) will be sent 
to the phone err-Phone. When errPhone receives this message. it will send 
back the message C( callErroneous ) to phone A. This object-oriented error 
handling is graphically shown in Fig. 6/18. 

Fig. 6/18 

~0 
I 
I 
I 

C( callRequest( A ) ) 

C( callErroneous ) 

Terminating a Call Connection 

I 

I I 
t... ___ .J 

A call connection from phone A to phone B can only be terminated by 
phone A by sending the message C( ringingTermination) to phone B. This 
is shown in Fig. 6/19. 
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C( ringingTermination ) 

Fig. 6/19 
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Fig. 6120 
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Transforming a Call Connection into a Talk Connection 

Only the called phone B can transform the call connection into a talk 
connection. This can be done by sending the message C( answer ) to the 
calling phone A, see Fig. 6120. 

Terminating a Talk Connection 

Both parties of a talk connection may terminate the talk connection by 
sending the message C( callTermination ) to the other phone, see Fig. 6121. 

C( callTermination ) 

, 

10) , 

Fig. 6/21 

All these messages are formally specified in the module CallMessages, 
see Fig. 6122. The sort PhoneMessage is the union of sort CallMessage with 
other sorts that will be added when new features of the mini-PABX are 
defined, see Section 6.2. 

module CallMessages; 
import Phoneldentity from PhoneIdentity; 
export all; 
sort CallMessage; 
constructors 

callRequest: Phoneldentity -> CallMessage; 
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callAccepted: - > CallMessage; 
callRefused: - > CallMessage; 
callErroneous: - > CallMessage; 
ringingTermination: -> CallMessage; 
answer: - > CallMessage; 
callTermination: -> CallMessage; 

end module CallMessages; 

module PhoneMessages; 
import CallMessage from CallMessages; 
export all; 
sort PhoneMessage; 
constructor 

C: CallMessage - > PhoneMessage; 
end module PhoneMessages; 

Fig. 6122 

6.8.3 The Module NextPlwne 

Chap. 6 

The operation next is defined in Fig. 6/23, according to the method 
discussed in Sections 6.1 and 6.2. 

module NextCallPhone; 
import PhoneIdentity, errPhoneIdentity from PhoneIdentity; all from CallMessages; 

C from PhoneStates; all except dialTone from CallStates; 
Phone, identityOf ..-J phoneStateOf ..-J _ [ _ / phoneState ] from Phone; 

export next to NextPhone; 
operation 

next: CallMessage • Phone - > Phone; 
declare id: PhoneIdentity; ph: Phone; 
operation axioms 

next( callRequest( id), ph) == 
if identityOf ph = errPhoneIdentity 

then ph 
else 

case phoneStateOf ph of 
C( idle ): ph [ C( ringing( id ) ) / phoneState ]; 
otherwise: ph; 

end case 
end if; 

next( callAccepted, ph ) == 
case phoneStateOf ph of 

C( callWaiting( id)): ph [ C( ringTone( id) ) / phoneState]; 
otherwise: error; 

end case; 

next( callRefused, ph ) == 
case phoneStateOf ph of 
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C( callWaiting( id) ): ph [ C( busyTone( id ) ) / phoneS tate ]; 
otherwise: error; 

end case; 

next( ringingTermination, ph ) == 
case phoneStateOf ph of 

C( ringing( id) ): ph [ C( idle) / phoneState ]; 
otherwise: error; 

end case; 

next( answer, ph) = 
case phoneStateOf ph of 

C( ringTone( id) ): ph [ C( connected( id) ) / phoneState ]; 
otherwise: error; 

end case; 

next( callTermination, ph ) == 
case phoneStateOf ph of 

C( connected( id ) ): ph [ C( terminating) / phoneState ]; 
otherwise: error; 

end case; 

next( callErroneous, ph ) == 
ph [ C( errorTone ) / phoneState ]; 

end module NextCallPhone; 

module NextPhone; 
import all from PhoneMes sages; Phone from Phone; 

CallMessage from CallMessages; next from NextCallPhone; 
export next; 
operation 

next: PhoneMessage * Phone - > Phone; 
declare callmsg: CallMessage; ph: Phone; 
operation axiom 

next( C( callmsg ), ph) == NextCallPhone.next( callmsg, ph); 
end module NextPhone; 

Fig. 6123 

6.8.4 The Module OutPhone 

Analogously, the operation out is given in Fig. 6/24. 

module OutCallListOfMessages; 
import Phoneldentity, errPhoneldentity from PhoneIdentity; C from PhoneMessages; 

ListOfMessages, nil, _I _ from ListOfMessages; idle from CallStates; 
Phone, identityOf ...J phoneStateOf _from Phone; C from PhoneStates; 
all from CallMessages; send _ toPhone _ from MessagePairs; 

export out to OutPhone; 
operation 

out: CallMessage * Phone -> ListOfMessages; 
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declare id: PhoneIdentity; ph: Phone; 
operation axioms 

out( callRequest( id). ph ) == 
if identityOf ph = errPhoneIdentity 

then send C( callErroneous ) toPhone Id I nil 
-else 

case phoneStateOf ph of 
C( idle ): send C( callAccepted ) toPhone id I nil; 
otherwise: send C( callRefused ) toPhone id I nil; 

end case 
end if: 

out( callAccepted. ph ) ~= nil; 

out( callRefused. ph ) - nil: 

out( ringingTermination. ph ) = nil: 

out( answer. ph ) ~= nil: 

out( callTermination. ph) -= nil; 

out( callErroneous. ph ) == nil; 
end module OutCallListOfMessages: 

module OutPhone; 
import all from PhoneMessages; Phone from Phone; 

CallMessage from CallMessages: out from OutCallListOfMessages; 
ListOfMessages from ListOfMessages: 

export out: 
operation 

out: PhoneMessage • Phone - > ListOfMessages; 
declare callmsg: CallMessage; ph: Phone; 
operation axiom 

out(C(callmsg). ph) -- OutCallListOfMessages.out(callmsg. ph): 
end module OutPhone: 

Fig. 6/24 

6.9 Enquiry Call 

Chap. 6 

A user engaged in any call (e.g .. a two-party voice call) may initiate an 
enquiry call to a third party. set up a conversation with this third party 
and then return to his previous party. 

To do so. the following actions must be taken. One of the two parties 
involved in the original call. say the first party. operates the recall button. 
dial tone is returned to this party. The first party can dial now the third 
party's number. According to the state of the third party. ring tone or 
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busy tone is returned. If the phone of the third party is free. it starts 
ringing. When the third party goes off-hook. an enquiry call [Steegmans85] 
has been realized. communication between the first and third party is 
possible. During the whole enquiry call, the second party cannot 
communicate with the first party any more, the second party is held in a 
kind of waiting state. The first party in conversation with the third party 
returns to the second party operating the recall button. Then. the enquiry 
call to the third party is terminated. 

In [Steegmans85, Vergauwen87] a third party cannot make an enquiry 
to a further party during the enquiry call. Here, we will abandon this 
restriction, resulting in a more general definition of the enquiry call. 

6.9.1 The Module Phone 

Up to now, a phone could be involved in one connection at most. This 
connection could be a call or talk connection. A phone involved in one 
connection at most is said to be in a normal mode. Introducing enquiry 
calls means that a phone may be involved in two connections: the 
underlying connection and the enquiry connection. The enquiry connection 
may be a call or talk connection. The underlying connection may only be a 
blocked connection (this will be defined later). The enquiry connection. 
which is the active connection. will still be described by means of the sort 
PhoneState, which is a component of the sort Phone. We introduce a new 
sort. called PhoneMode. to describe the underlying connection, see Fig. 
6/25. 

module PhoneModes; 
import Phoneldentity from Phoneldentity; 
export all; 
sort PhoneMode; 
constructors 

normal: - > PhoneMode; 
enquiry: PhoneIdentity -> PhoneMode; 
enquiryNi1: -> PhoneMode; 

end module PhoneModes; 

Fig. 6125 

The mode normal indicates that the phone has not initiated an enquiry 
call (but it may, e.g .. have been called by a phone in enquiry mode). A 
phone B has mode enquiry( A ) as soon as it has operated the recall button 
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to initiate an enquiry call during a call connection with phone A. If phone 
A hangs up during the enquiry call, however, the mode of phone B becomes 
enquiryNil. In Fig. 6/26 the sort PhoneMode is added to sort Phone. 

module Phone; 
import Phoneldentity, errPhoneidentity from Phoneldentity; 

PhoneState, C from PhoneStates; 
PhoneMode, normal from PhoneModes; idle from Callstates; 

export all except (-, -' ..J , _ [ _ / phoneldentity ]; 
sort Phone == Phoneldentity • PhoneState • PhoneMode 

rename phoneldentityOf _as identityOf --.: 
operations 

newPhone: Phoneldentity -> Phone; 
err Phone: - > Phone; 

declare id: Phoneldentity; 
operation axiom 

newPhone( id) = (id, C( idle), normal); 
errPhone == ( errPhoneldentity, C( idle ), normal ); 

end module Phone; 

Fig. 6126 

For introducing the enquiry feature, only one new phone state is 
needed. If phone A has a talk connection with phone Band B initiates an 
enquiry call, phone A comes into the enquiry state heldBy( B ), see Fig. 
6/27. 

module EnquiryStates; 
import Phoneldentity from Phoneldentity; 
export all; 
sort EnquiryState; 
constructor 

heldBy: Phoneldentity -> EnquiryState; 
end module EnquiryStates; 

module PhoneStates; 
import CallState from CallStates; 

EnquiryState from EnquiryStates; 
export all; 
sort PhoneState; 
constructors 

C: CallState -> PhoneState; 
E: EnquiryState -> PhoneState; 

end module PhoneStates; 

Fig. 6127 
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6.9.2 The Module PhoneMessages 

A blocked connection from phone B to phone A has been established if and 
only if: 

• phoneModeOf phone( B) == enquiry( A); 

• phoneStateOf phone( A ) == E( heldBy( B ) ); 

The messages that will be introduced for specifying enquiry calls can be 
partitioned into three classes: 

• messages for transforming a talk connection into a blocked connection. 

• messages for terminating a blocked connection. 

• messages for transforming a blocked connection into a talk connection. 

Transforming Talk Connection into Blocked Connection 

A talk connection from phone A to phone B can only be transformed into a 
blocked connection if the party initiating the transformation. say B. is in 
mode normal. Phone B. which comes in mode enquiry( A ). establishes the 
transformation by sending the message E( onHold) to phone A. Then. 
phone A comes in phone state heldBy( B). see Fig. 6/28. 

Fig. 6128 
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Terminating a Blocked Connection 

Both parties of a blocked connection may terminate the connection by 
sending the message E( onHoldTermination( X) ) to the other party, with 
X standing for the identity of the phone terminating the blocked 
connection. This is graphically illustrated in Fig. 6/29 and 6/30. 

E( onHoldTerminalion( B ) ) 

Fig. 6129 
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Fig. 6/30 

Transforming Blocked Connection into Talk Connection 

Only the phone that initiated the blocked connection may transform it 
back into a talk connection by sending the message E( onHoldResolved ) to 
its previous partner. see Fig. 6/31. 
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Fig. 6/31 

All these messages are formally specified in the module 
EnquiryMessages. see Fig. 6/32. The sort PhoneMessage is the union of 
sort CallMessage and EnquiryMessage. 

module EnquiryMessages; 
import PhoneIdentity from PhoneIdentity; 
export all; 
sort EnquiryMessage; 
constructors 

onHold: -> EnquiryMessage; 
onHoldTermination: PhoneIdentity -> EnquiryMessage; 
onHoldResolved: -> EnquiryMessage; 

end module EnquiryMessages; 

module PhoneMessages; 
import CallMessage from CallMessages; 

EnquiryMessage from EnquiryMessages; 
export all; 
sort PhoneMessage; 
constructors 

C: CallMessage - > PhoneMes sage; 
E: EnquiryMessage -> PhoneMessage; 

end module PhoneMessages; 

Fig. 6/32 
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6.9.3 The Module NextPlwne 

As explained in Section 6.2. the operation next of module NextPhone is 
defined as the union of a number of operations corresponding to the 
messages of the various features. The operation next corresponding to the 
call messages was given in Fig. 6/23. In Fig. 6/33 the operation next 
corresponding to the enquiry messages is given. 

module NextEnquiryPhone: 
import PhoneIdentity from PhoneIdentity: all from PhoneModes: 

all from EnquiryMessages: connected. terminating from CallStates: 
Phone. phoneStateOf ...J phoneModeOf ...J _[ _I phoneState]. 

_ [ _ I phoneMode ] from Phone: C, E from PhoneStates: 
export next to NextPhone: 
operation 

next: EnquiryMessage • Phone - > Phone: 
declare mode: PhoneMode: ph: Phone: id, id1 : PhoneIdentity: 

operation axioms 
next( onHold, ph ) == 

case phoneStateOf ph of 
C( connected( id) ): ph [ E( heldBy( id) ) I phoneState]: 
otherwise: error: 

end case: 

next( onHoldTermination( id ), ph ) = 
enquiry( id ): ph [ enquiryNil I phoneMode ]: 
otherwise: 

case phoneStateOf ph of 
E( heldBy( id ) ): ph [ C( terminating) I phoneState ] 
otherwise: error: 

end case: 
end case: 

next( onHoldResolved, ph ) == 
case phoneStateOf ph of 

E( heldBy( id) ): ph [ C( connected( id)) I phoneState]: 
otherwise: error; 

end case: 
end module NextEnquiryPhone: 

module NextPhone: 
import all from PhoneMessages: Phone from Phone: 

CallMessage from CallMessages: next from NextCallPhonel; 
EnquiryMessage from EnquiryMessages: next from NextEnquiryPhone; 

export next; 
operation 

next: PhoneMessage • Phone - > Phone: 
declare callmsg: CallMessage: enquirymsg: EnquiryMessage; ph: Phone: 
operation axioms 

next( C( callmsg), ph) == NextCallPhone.next( callmsg, ph): 
next( E( enquirymsg), ph) = N~tEnquiryPhone.next( enquirymsg, ph): 
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end module NextPhone; 

Fig. 6/33 

6.9.4 The Module OutPlwne 

Analogously, the operation out is given in Fig. 6/34. 

module OutEnquiryListOfMessages; 
import all from EnquiryMessages; 

Phoneldentity from Phoneldentity; 
Phone from Phone; 
nil, ListOfMessages from ListOfMessages; 

export out to OutPhone; 
operation 

out: EnquiryMessage * Phone -> ListOfMessages; 
declare enquirymsg: EnquiryMessage; ph: Phone; 
operation axioms 

out( enquirymsg, ph) == nil; 
end module OutEnquiryListOfMessages; 

module OutPhone; 
import all from PhoneMessages; Phone from Phone; 

Chap. 6 

CallMessage from CallMessages; out from OutCallListOfMessages; 
EnquiryMessage from EnquiryMessages; out from OutEnquiryListOfMessages; 
ListOfMessages from ListOfMessages; 

export out; 
operation 

out: PhoneMessage * Phone -> ListOfMessages; 
declare callmsg: CallMessage; enquirymsg: EnquiryMessage; ph: Phone; 
operation axioms 

outCC(callmsg), ph) = OutCallListOfMessages.out(callmsg, ph); 
out(E(enquirymsg), ph) = OutEnquiryListOfMessages.outCenquirymsg, ph); 

end module OutPhone; 

Fig. 6/34 

6.10 User Actions 

In the previous sections the two-party voice call and the enquiry feature 
were described. In [Vergauwen87] a lot of other features can be found. It 
is important to notice that so far only the interaction between the objects 
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of the mini-PABX (usually phones) were discussed but not the interaction 
between the users and their phones. The reason is that a user action may 
be related to various features. For instance, going on-hook may terminate 
a two-party voice call as well as an enquiry call. Therefore, the user 
actions are treated here, in a separate section. The module Phone, as 
defined in the previous s~ction, remains unchanged. The modules 
PhoneMessages, NextPhone and OutPhone are extended in the same 
systematic way as was done in the previous sections. User messages are 
defined as a new kind of phone messages for indicating the interactions 
from the users to their phones. Phones cannot send messages to users. We 
assume that the users can inspect the states of their phones. 

6.10.1 The Module PlwneMessages 

In order to enable communication from the user to his phone, a phone is 
provided with a number of communication parts. The physical 
appearances of these parts are irrelevant. Every use of a communication 
part is abstracted by means of a user message. We distinguish the 
following user messages: 

• off Hook: -> UserMessage: 

This message corresponds to picking up a receiver. 

• onHook: -> UserMessage: 

This message corresponds to hanging up (replacing the receiver). 

• dialCode(_): Code -> UserMessage: 

This message corresponds to dialling a code. The codes are described in 
module Codes, see Fig. 6/35. In our mini-PABX we only have 
phoneCode with a phone identity as parameter. This corresponds to 
dialling a number. 

module Codes; 
import Phoneldentity from Phoneldentity; 
export all; 
sort Code; 
constructors 

phoneCode: PhoneIdentity -> Code; 
end module Codes; 

Fig. 6/35 
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• button: - > UserMessage; 

This message corresponds to operating the recall button. 

All these messages are formally specified in Fig. 6/36. The sort 
PhoneMessage is the union of sort CallMessage. EnquiryMessage and 
UserMessage. 

module UserMessages; 
import Phoneldentity from Phoneldentity; Code from Codes; 
export all; 
sort UserMessage; 
constructors 

onHook: -> UserMessage; 
off Hook: -> UserMessage; 
dialCode: Code -> UserMessage; 
button: -> UserMessage; 

end module UserMessages; 

module PhoneMessages; 
import CallMessage from CallMessages; UserMessage from UserMessages; 

EnquiryMessage from EnquiryMessages; 
export all; 
sort PhoneMessage; 
constructors 

C: Ca1lMessage - > PhoneMessage; 
E: EnquiryMessage -> PhoneMessage; 
U: UserMessage -> PhoneMessage; 

end module PhoneMessages; 

Fig. 6/36 

6.10.2 The Module NextPlwne 

The operation next is defined as the union of a number of operations 
corresponding to the messages of the various features. The operations next 
corresponding to the call messages and the enquiry messages were given in 
Fig. 6/23 and 6/33 respectively. In Fig. 6/37 the operation next 
corresponding to the user messages is given. 

module NextUserPhone; 
import Phoneldentity from Phoneldentity; all from Phone; all from Codes; 

all from UserMessages; all except PhoneMode from PhoneModes; 
C from PhoneStates; all except CallState from CallStates; 

export next to NextPhone; 
operation 
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next: UserMessage * Phone -> Phone; 
declare id, id1: Phoneldentity; ph: Phone; code: Code; 
operation axioms 

next( onHook, ph ) == 
case phoneModeOf ph of 

normal: 
case phoneStateOf ph of 

C( idle ), C( ringing( id1 ) ): ph; 
otherwise: ph [ C( idle-) / phoneState ]; 

end case; 
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enquiryNil, enquiry( id): ph [ C( idle) / phoneState ] [ normal / phoneMode ]; 
end case; 

next( off Hook, ph ) == 
case phoneStateOf ph of 

C( idle ): ph [ C( dialTone ) / phoneState ]; 
C( ringing( id1 ) ): ph [ C( connected( id1 ) ) / phoneState ]; 
otherwise: ph; 

end case; 

next( dialCode( code), ph) = 
case phoneStateOf ph of 

C( dialTone ): 
case code of 

phoneCode( id1 ): ph [ C( callWaiting( id1 ) ) / phoneState]; 
end case; 

otherwise: ph; 
end case; 

next( button, ph ) == 
case phoneModeOf ph of 

normal: 
case phoneStateOf ph of 

C( connected( id1 ) ): 

ph [ C( dialTone) / phoneState ] [ enquiry( id1 ) / phoneMode ]; 
otherwise: ph; 

end case; 
enquiryNil: ph [ C( terminating) / phoneState ] [ normal / phoneMode ]; 
enquiry( id): ph [C( connected( id)) / phoneState] [normal / phoneMode ]; 

end module NextUserPhone; 

module NextPhone; 
import all from PhoneMes sages; Phone from Phone; 

CallMessage from CallMessages; next from NextCallPhone; 
EnquiryMessage from EnquiryMessages; next from NextEnquiryPhone; 
UserMessage from UserMessages; next from NextUserPhone; 

export next; 
operation 

next: PhoneMessage * Phone - > Phone; 
declare callmsg: CallMessage; enquirymsg: EnquiryMessage; 

usermsg: UserMessage; ph: Phone; 
operation axioms 

next( c( callmsg), ph) == NextCallPhone.next( callmsg, ph); 
next( E( enquirymsg ), ph ) = NextEnquiryPhone.next( enquirymsg, ph ); 
next( U( usermsg), ph) = NextUserPhone.next( usermsg, ph); 

end module NextPhone; 

Fig. 6/37 
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6.10.3 The Module OutPhone 

Analogously, the operation out is given in Fig. 6/38. 

module OutUserListOfMessages; 
import Phoneldentity from Phoneldentity; all from ListOfMessages; 

all except PhoneMode from PhoneModes; C, E from PhoneStates; 
callTermination, answer, ringingTermination, callRequest from CallMessages; 
onHold, onHoldTermination, onHoldResolved from EnquiryMessages; 
C, E from PhoneMessages; send _ toPhone _ from MessagePairs; 
Phone, identityOf ....J phoneStateOf ....J phoneModeOf _from Phone; 
connected, ringTone, dialTone, ringing from CallStates; 
all from Codes; all from UserMessages; 

export out to OutPhone; 
operation 

out: UserMessage * Phone -> ListOfMessages; 
declare id, id1: Phoneldentity; code: Code; ph: Phone; 
operation axioms 

out( onHook, ph ) = 

case phoneModeOf ph of 
normal, enquiryNil: 

case phoneStateOf ph of 
C( connected( id1 ) ): 

send C( callTermination) toPhone id1 I nil; 
C( ringTone( id1 ) ): 

send C( ringingTermination ) toPhone id1 I nil; 
E( heldBy( id ) ): 

send E( onHoldTermination( identityOf ph ) toPhone id I nil; 
otherwise: nil; 

end case; 
enquiry( id): 

case phoneStateOf ph of 
C( connected( id1 ) ): 

send E( onHoldTermination( identityOf ph) toPhone id 
I send C( callTermination ) toPhone id1 I nil; 

C( ringTone( id1 ) ): 

send E( onHoldTermination( identityOf ph) toPhone id 
I send C( ringingTermination ) toPhone id1 I nil; 

E( heldBy( id1 ) ): 

send E( onHoldTermination( identityOf ph ) toPhone id 
I send E( onHoldTermination( identityOf ph ) toPhone id1 I nil; 

otherwise: 
send E( onHoldTermination( identityOf ph)) toPhone id I nil; 

end case; 
end case; 

out( off Hook, ph) = 

case phoneStateOf ph of 
C( ringing( id1 ) ): send C( answer) toPhone id1 I nil; 
otherwise: nil; 

end case; 

out( dialCode( code ), ph ) = 
case phoneStateOf ph of 

Chap. 6 
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C( dialTone ): 
case code of 

phoneCode( id1 ): 

send C( callRequest( identityOf ph ) ) toPhone id1 I nil; 
end case; 

otherwise: nil; 
end case; 

out( button, ph ) == 
case phoneModeOf ph of 

normal: 
case phoneStateOf ph of 

C( connected( id1 ) ): 

send E( onHold ) toPhone id1 I nil; 
otherwise: nil; 

end case; 
enquiryNil: 

case phoneStateOf ph of 
C( connected( id1 ) ): 

send C( callTermination ) toPhone id1 I nil; 
C( ringTone( id1 ) ): 

send C( ringingTermination) toPhone id1 I nil; 
E( heldBy( id1 ) ): 
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send E( onHoldTermination( identityOf ph ) ) toPhone id1 I nil; 
otherwise: nil; 

end case; 
enquiry( id ): 

case phoneStateOf ph of 
C( connected( id1 ) ): 

send E( onHoldResolved ) toPhone id 
I send C( callTermination ) toPhone id1 I nil; 

C( ringTone( id1 ) ): 

send E( onHoldResolved ) toPhone id 
I send C( ringingTermination ) toPhone id1 I nil; 

E( heldBy( id1 ) ): 

send E( onHoldResolved ) toPhone id 
I send E( onHoldTermination( identityOf ph ) ) toPhone id1 I nil; 

otherwise: send E( onHoldResolved) toPhone id I nil; 
end case; 

end case; 
end module OutUserListOfMessages; 

module OutPhone; 
import all from PhoneMessages; Phone from Phone; 

Cal1Message from CallMessages; 
out from OutCallListOfMessages; EnquiryMessage from EnquiryMessages; 
out from OutEnquiryListOfMessages; UserMessage from UserMessages; 
out from OutUserListOfMessages; ListOfMessages from ListOfMessages; 

export out; 
operation 

out: PhoneMessage· Phone -> ListOfMessages; 
declare callmsg: CallMessage; enquirymsg: EnquiryMessage; 

usermsg: User Message; ph: Phone; 
operation axioms 

out( C( callmsg ), ph ) == OutCallListOfMessages.out( callmsg, ph ); 
out( E( enquirymsg ), ph ) == OutEnquiryListOfMessages.out( enquirymsg, ph ); 
out( U( usermsg), ph) == OutUserListOfMessages.out( usermsg, ph); 
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I end module OutPhone; 

Fig. 6/38 

6.11 Conclusion 

The original informal descriptions of the features of the PABX 
[Steegmans84, Steegmans85] often were ambiguous and incomplete 
[Jacobs86]. Because the various features were described independently, it 
was impossible to overlook the interactions between them. Therefore, 
designers, implementors, sales representatives and customers may interpret 
the features in a different way. Detailed questions about the features (the 
what) can only be answered as soon as they have been implemented either 
by looking at the assembler code (the how) or by executing the code. 

As a remedy for this we have proposed a formal specification. It is our 
experience that a formal specification is very useful as a standard (norm). 
Detailed questions can be answered in a precise and unambiguous way 
thanks to the mathematical foundations of the formal specification. We do 
not assert that informal specifications are worthless. Formal and informal 
specifications must be considered complementary. Therefore, each feature 
was always described informally first, making use of many graphical 
representations. The informal specification was used as documentation for 
the formal specification, which is, by definition, the standard. 
Furthermore, we found out that by making a formal specification we were 
forced to probe the matter to the very bottom and to specify it in a very 
precise and complete way. 

In [Vergauwen87] a lot of other features can be found that were added 
in the same way. We mention camping and intrusion, transfer, the pick-up 
feature, the booking feature, a wake-up service, two kinds of conference 
calls and time-outs. Thanks to the modularity, the object-oriented design 
method and adapted data structures, the complexity of the P ABX can be 
mastered. Another important software engineering principle is abstraction. 
Only the characteristics of the features were specified, not irrelevant 
information (e.g., a user need not know the ITT 5400 BCS is based on a 
16-bit micro-processor). 

Using only constructive specifications enables rapid prototyping. Tests 
and experiments can be done by designers and customers and the 
specification can be tuned until the desired behaviour is obtained. In our 
department an environment for algebraic specifications is under 
development. This environment already consists of a syntax checker, a 
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type controller. a checker for the uniqueness and completeness constraints. 
an import-export checker. a checker for the constructiveness constraints. 
and a reductor. 

In the future we hope to build a theorem prover. Indeed. thanks to the 
mathematical foundations rigorous reasoning becomes possible. Rapid 
prototyping and theorem proving must be seen as complementary methods 
for better understanding specifications and for gaining confidence that they 
express what we have in mind. If we define the appropriate equality 
operations. interesting theorems about the mini-P ABX in a stable situation 
are. e.g .• 

• declare M: MiniP ABX: phoneA. phoneB: Phone: 
A. B: phoneIdentity: 

theorem 
let 

phoneA = select( phonePoolOf MiniP ABX. A ): 
phoneB = select( phonePoolOf MiniP ABX. B ): 
in 

phoneStateOf phoneA = C( connected( B) ) <=> 
phoneStateOf phoneB = C( connected( A ) ) 

end let = true: 

• declare M: MiniP ABX: phoneA. phoneB: Phone: 
A. B: phoneIdentity: 

theorem 
let 

phoneA = select( phonePoolOf MiniP ABX. A ): 
phoneB = select( phonePoolOf MiniP ABX. B ): 
in 

phoneStateOf phoneA = C( ringtone( B) ) <=> 
phoneStateOf phoneB = C( ringing( A) ) 

end let = true: 

• declare M: MiniP ABX: phoneA. phoneB: Phone: 
A. B: phoneIdentity: 

theorem 
let 

phoneA = select( phonePoolOf MiniP ABX. A ): 
phoneB = select( phonePoolOf MiniP ABX. B ); 
in 

phoneStateOf phoneA = E( heldBy( B ) ) < = > 
phoneModeOf phoneB = enquiry( A ) 

end let == true; 
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• declare M: MiniP ABX; phoneA: Phone; A. B: phoneldentity; 
theorem 

let 
phoneA == select( phonePoolOf MiniPABX. A); 
in 

( phoneStateOf phoneA = C( idle) ) or 
( phoneSta teOf phoneA = C( ringing( B ) ) 
= > phoneModeOf phoneA = normal 

end let == true; 

• declare M: MiniP ABX; phoneA: Phone; A. B: phoneldentity; 
theorem 

let 
phoneA = select( phonePoolOf MiniP ABX. A ); 
in 

(phoneStateOf phoneA = B( heldBy( B) ) ) and 
( phoneModeOf phoneA = enquiry( B ) ) 

end let == false; 

• Another family of theorems is obtained by proving that all places in the 
specification where error is written are not reachable when only 
transformations by user actions are considered. 

We believe that algebraic specifications are very suitable for specifying 
data structures. However. reducing a PABX to a single monolithic data 
structure is unrealistic and results in a less readable specification. because 
the number of states grows out of control very rapidly [Goovaers86. 
Jacobs86]. Therefore. we use an object-oriented design method. A state is 
associated with the logical objects. Furthermore. the objects can 
communicate with each other by sending messages. When an object 
receives a message. its state can be changed and the object in turn can send 
messages to other objects. This object-oriented mechanism is not supported 
by the algebraic specification language. An interesting topic would be to 
incorporate it in the specification language. Moreover. by allowing 
messages to be be sent in parallel. concurrency can be introduced in the 
language. 
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7. Error Handling 
"Errors. like straws. upon the surface flow. 

He who would search for pearls must dive below." 
John Dryden 

A well-defined algebraic specification does not only precisely describe an 
abstract data type in its normal situations. but also in its abnormal 
(exceptional) ones. A trivial example of an abnormal situation for the 
abstract data type Stack is when an empty stack is popped. A well-defined 
algebraic specification describes when abnormal situations occur and what 
exactly happens in such cases. Error handling is of utmost importance. 
especially when one deals with constructive specifications used for rapid 
prototyping. An adequate error handling enhances robustness. i.e. the 
ability of a software system to function even in abnormal situations. 

Error handling must be introduced in algebraic specifications in such a 
way that the principles of rigorous reasoning remain valid. In principle. 
algebraic specification languages based on many-sorted initial algebras are 
powerful enough to specify any required error handling. However. most 
of them do not provide any direct support for a rigorous and readable 
treatment of exceptions. In literature on algebraic specifications the 
activities on error handling can be divided into two classes. There are the 
activities to extend the mathematical framework so that it incorporates 
error handling. Other activities treat error handling within an existing 
mathematical framework. Our approach of error handling lies in the 
second class. On the algebraic specification language. as described in 
Chapters 3 and 4. we superimpose a notation that supports not only the 
specification of error handling. but also a specification metlwd to deal with 
error handling. Following this method. algebraic specifications can be built 
in two steps. In a first step. one only deals with the normal situations. 
giving rise to an incomplete specification. In a second step. all the 
abnormal situations are treated. This two-step method increases 
readability and modularity of specifications. 
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7.1 The Need for an Error Handling System 

By further elaborating the specification of the natural numbers. the need 
for a direct support for a rigorous treatment of exceptions will be 
illustrated. Let us add the predecessor function to the specification. A 
problem arises with the predecessor of zero. Intuitively speaking. we like 
to add an unsafe object to the set of natural numbers without disturbing 
anything else. This is done in Fig. 711. where the unsafe object is called 
errNat. 

module Nat; 
export all; 
sort Nat; 
constructors 

zero: -> Nat; 
suee: Nat -> Nat; 
errNat: -> Nat; 

operations 
pre: Nat -> Nat; 
add: Nat· Nat -> Nat; 
mult: Nat· Nat -> Nat; 

declare n. nl> n2: Nat; 
operation axioms 

pre( zero) == errNat; 
pre( suecC n ) ) = n; 
add( zero. n) = n; 
add( suecC nl ). n2 ) = suecC add( nl. n2 ) ); 
mult( zero. n) = zero; 
mult( suecC nl ). n2 ) = add( n2. mult( nl> n2 ) ); 

end module Nat; 

Fig. 7/1 

By defining the new constructor errNat. the completeness constraints 
are not met. Indeed. what is. e.g .. pre( errNat)? We can simply add the 
constructor axiom and the operation axioms that are given in Fig. 7/2. 

constructor axiom 
suee( errNat ) == errNat; 
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operation axioms 
pre( errNat ) = errNat; 
add( errNat, n ) = errNat; 
mult( errNat, n ) == errNat; 

Fig. 712 
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Unfortunately, in the resulting specification not all terms containing an 
unsafe subterm are reduced to errNat (which is what we have in mind). 
This is shown by the following equalities derived from previous axioms: 

mult( zero, pre( zero )) = mult( zero, errNat ) = zero 

Adding new operation axioms 

operation axioms 
mult( n, errNat) = errNat; 
add( n, errNat ) = errNat; 

Fig. 7/3 

to introduce strict error propagation. violates the uniqueness constraints. 
E.g., the term mult( zero, errNat ) can be reduced to zero as well as to 
errNat. The difficulties arise because the axioms of Fig. 7/1 are only 
intended for normal situations. whereas the axioms of Fig. 712 and 7/3 are 
only applicable in erroneous situations. 

The problem can be solved by distinguishing explicitly between two 
kinds of natural numbers using a boolean function safeNat, which is called 
the safety function of the natural numbers. Firstly, we have safe objects: 
natural numbers such that safeNat results in true. Secondly, we have 
unsafe objects: natural numbers such that safeNat results in false. In Fig. 
7/4 a specification for the natural numbers is given using this safety 
function safeNat in a systematic way. 

module Nat; 
import Bool, true, false, not -' _ and _ from Bool; 
export all; 
sort Nat; 
constructors 

zero: -> Nat; 
suee: Nat -> Nat; 



www.manaraa.com

218 Error Handling 

errNat: -> Nat; 
operations 

safeNat: Nat -> Bool; 
pre: Nat -> Nat; 
add: Nat· Nat -> Nat; 
mult: Nat • Nat -> Nat; 

declare n, nl, n2: Nat; 
constructor axiom 

not safeNat( n ) ::;> n == errNat; 
operation axioms 

safeNat( zero) = true; 
safeNat( succ( n) ) == safeNat( n ); 
safeNat( errNat ) == false; 
pre( zero) = errNat; 
pre( succ( n ) ) = 

if safeNat( succ( n ) ) 
thenn 
else errNat 

end if; 
pre( errNat ) = errNat; 
add( zero, n ) = 

if safeNat( n ) 
thenn 
else errNat 

end if; 
add( succ( nl ), n2 ) == 

if safeNat( succ( nl ) ) and safeNat( n2 ) 
then succ( add( nt. n2 ) ) 
else errNat 

end if; 
add( errNat, n ) = errNat; 
mult( zero, n) == 

if safeNat( n ) 
then zero 
else errNat 

end if; 
mult( succ( nl ), n2 ) == 

if safeNat( succ( nl ) ) and safeNat( n2 ) 
then add( n2, mult( nl> n2 ) ) 
else errNat 

end if; 
mult( errNat, n ) == errNat; 

end module Nat; 

Fig. 7/4 

Chap. 7 

Notice that all natural numbers are safe objects except errNat. which is an 
unsafe object. An optimized version of the module Nat is given in Fig. 7/5. 

Although we specified the intended abstract data type, we are not 
satisfied with the specification as it is rather cumbersome. The complexity 
will increase for larger specifications, resulting in unreadable 
specifications. A good error handling mechanism must reduce this 
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complexity. and the key information on error handling must be visible at 
first sight. 

module Nat; 
import all from Bool; 
export all; 
sort Nat; 
constructors 

zero: -> Nat; 
suee: Nat -> Nat; 
errNat: -> Nat; 

operations 
safeNat: Nat -> Bool; 
pre: Nat -> Nat; 
add: Nat * Nat -> Nat; 
mult: Nat * Nat -> Nat; 

declare n. nl> n2: Nat; 
constructor axiom 

suee( errNat ) = errNat; 
operation axioms 

safeNat( zero) = true; 
safeNatC suec( n ) ) = safeNat( n ); 
safeNat( errNat ) == false; 
pre( zero) = errNat; 
pre( suec( n)) == n; 
pre( errNat ) = errNat; 
add( zero. n) == n; 
add( suec( nl ). n2 ) == suee( add( nl> n2 ) ); 
add( errNat. n ) = errNat; 
mult( zero. n) == 

if safeNat( n ) 
then zero 
else errNat 

end if; 
mult( suec( nl ), n2 ) = add( n2. mult( nl> n2 ) ); 
multC errNat. n ) == errNat; 

end module Nat; 

Fig. 7/5 

We will introduce a shorthand notation to construct safety functions 
and to indicate which axioms are applicable. The notation is a trade-off 
between readability and the class of error situations it can handle. Also a 
two-step method for designing specifications will be provided. which 
enhances modularity. In a first step the specification is given with error 
detection only. in a second step error handling is added. 
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7.2 Safety Functions 

A boolean function that divides a set of objects into safe objects and unsafe 
objects is called the safety function of the sort. For example. the function 
safeNat in Fig. 7/4 is the safety function of sort Nat. 

In Fig. 7/6 the safety function safeNat is defined by the syntactic 
constructs that we introduce on the constructors. Every constructor has to 
be marked either by $$ or 11. A constructor marked by 11 always denotes 
an unsafe object (Le. the safety function returns false). A constructor 
marked by $$ denotes a safe object (i.e. the safety function returns true) if 
and only if all the requested arguments of the constructor are safe objects. 
A constructor argument is requested to be safe if the corresponding sort in 
the rank declaration of the constructor is preceded by a propagation marker 
$. 

module Nat; 
import all from Bool; 
export all; 
sort Nat; 
constructors 

zero: -> Nat $$; 
succ: $ Nat -> Nat $$; 
errNat: -> Nat??; 

operations 
pre: Nat -> Nat; 
add: Nat· Nat -> Nat; 
mult: Nat· Nat -> Nat; 

-- ••• see Fig. 7/4-
end module Nat; 

Fig. 7/6 

Here. the markers indicate the following: 1) the constructor zero 
denotes a safe object; 2) a term succ( n ) denotes a safe object if and only if 
n denotes a safe object; 3) errNat denotes an unsafe object. This definition 
of safeNat is equivalent to the one given in Fig. 7/4. The definition of the 
safety function can be derived mechanically from the shorthand notation. 

Generally speaking. in order to have consistent specifications. applying 
the appropriate safety function to the left-hand side of a constructor axiom 
must always yield the same result as applying this safety function to the 
right-hand side of the constructor axiom. 
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7.3 Safety and Unsafety Markers 

Safety markers and unsafety markers indicate in which situations axioms 
can be applied. There are two safety markers, namely $ and $$, and three 
unsafety markers, !, 7 and 77. An axiom may contain more than one 
marker. In that case all corresponding conditions must be met. Markers 
may occur in both left-hand and right-hand sides of axioms. 

• If a term in an axiom is preceded by $, the axiom is only applicable if 
the term denotes a safe object. Assume that an axiom 

... $t ... == ... : 

contains a term t of sort Si preceded by $, the axiom is equivalent to 

safeSi( t ) => ... t ... == ... : 

• If a term in an axiom is preceded by!, the axiom is only applicable if 
the term denotes an unsafe object. Assume that an axiom 

... It ... = ... : 

contains a term t of sort Si preceded by!, the axiom is equivalent to 

not safeSi( t ) => ... t ... = ... : 

• If just k terms in an axiom are preceded by 7, the axiom is only 
applicable if at least one of these terms denotes an unsafe object. 
Assume that an axiom 

... 7 tl ... 7 tz ... == ... 7 tk ... : 

contains just k terms preceded by 7, respectively of sort Sil' Si2' ... Sik' 
the axiom is equivalent to 

not (safeSil ( tl ) and safeSi2( tz ) and ... and safeSik( tk )) => 
... tl ... tz ... == ... tk ... : 

• If a constructor or operation in an axiom is preceded by $$, the axiom is 
only applicable if all the arguments of the constructor or operation 
denote a safe object. Assume that an axiom 
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... $$ f( tl' t2' .... tk ) 

contains a constructor or operation f declared as f: Sil * Si2 * ... * Sik -> 
Sj. the axiom is equivalent to 

safeSil ( tl ) and safeSi2 ( t2 ) and ... and safeSik ( tk ) => 
... f( h. t2' ...• tk) ... == ... ; 

• If a constructor or operation in an axiom is preceded by?? the axiom is 
only applicable if at least one of the arguments of the constructor or 
operation denotes an unsafe object. Assume that an axiom 

... ?? f( tl. t2 ..... tk) ... = ... ; 

contains a constructor or operation f declared as f: Sil * Si2 * ... * Sik - > 
Sj. the. axiom is equivalent to 

note safeSil( tl ) and safeSi2( t2 ) and ... and safeSik( tk )) => 
... f( tl' t2' ...• tk) ... == ... ; 

To avoid syntactical overloading each term may be preceded by at most 
one marker. It is still allowed to use the safety functions explicitly. The 
meaning of the markers is summarized in Fig. 717. 

Marker The situation in which the axiom may be applied 
$ all indicated terms denote safe objects 
! all indicated terms denote unsafe objects 
1 at least one term preceded by 1 denotes an unsafe object 
$$ all arguments of the indicated nonnullary operation are safe objects 
11 at least one argument of the indicated nonnullary operation is an unsafe object 

Fig. 717 

Notice that placing a marker $ or I before the left-hand side of an 
operation axiom does not make any sense. Indeed. the marker indicates 
that the operation axiom may only be applied to an expression that can be 
reduced to a term denoting a safe object. respectively unsafe object. But in 
order to reduce. the operation axiom must be applied. Analogously. 
placing a marker? before the left-hand side of an operation axiom does not 
make any sense. 
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Example 

In Fig. 7/8 safety and unsafety markers are used to specify the natural 
numbers. 

module Nat; 
export all; 
sort Nat; 
constructors 

zero: -> Nat $$; 
suee: $ Nat -> Nat $$; 
errNat: -> Nat ??; 

operations 
pre: Nat -> Nat; 
add: Nat * Nat -> Nat; 
mult: Nat * Nat -> Nat; 

declare n. nl. n2: Nat; 
constructor axiom 
I n == errNat; 
operation axioms 
$$ pre( zero) == errNat; 
$$ pre( succ( n ) ) == n; 
$$ add( zero. n) == n; 
$$ add( suec( nl ). n2 ) == suee( add( nt. n2 ) ); 
$$ mult( zero. n) = zero; 
$$ mult( suee( nl ). n2 ) = add( n2. mult( nl. n2 ) ); 

?? pre( n ) = errNat; 
?? add( nt. n2 ) = errNat; 
?? mu1t( nl. n2 ) == errNat; 

end module Nat; 

Fig. 7/8 

-- 1 --
-- 2--
-- 3--
-- 4--
-- 5--
-- 6--

--7 --
-- 8 --
-- 9--

It is important to notice that no new concepts are introduced. We only 
used a new syntactic notation. Operation axiom 6 is equivalent to 

safeNat( succ( nl ) ) and safeNat( n2 ) => 
mult( succ( nl)' n2 ) == add( n2. muIt( nl. n2 ) ): 

Operation axiom 9 is equivalent to 

note safeNat( nl ) and safeNat( n2 ) ) => 
mult( nl. n2 ) = errNat: 
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The constructor axiom of Fig. 7/8 is equivalent to 

not safeNatC n ) => n = errNat: 

The specification of Fig. 7/8 is equivalent to that of Fig. 7/4. But the 
specification of Fig. 7/8 is more concise. reflecting clearly the error 
handling information. 

7.4 Method of Error Specification 

An important feature of the proposed error handling mechanism is the 
possibility to construct specifications in two steps. In a first step. 
incomplete specifications are built with error detection only. Roughly 
speaking. such a specification describes the operations for safe operands 
only. The specification is irrelevant when the operands are unsafe. In a 
second step. error handling is superimposed. This method is illustrated by 
the well-known example of the stack. 

First Step 

In the first step. the completeness constraints are only met with respect to 
the safe objects. see Fig. 7/9. 

module Stack; 
import Bool. true. false from Bool; 

Nat. errNat from Nat; 
export all; 
sort Stack; 
constructors 

news tack: - > Stack $$; 
push: $ Stack· Nat -> Stack $$; 
errStack: - > Stack 71; 

operations 
pop: Stack - > Stack; 
top: Stack -> Nat; 
isnewstack: Stack - > Bool; 

declare s: Stack; n: Nat; 
operation axioms 
$$ pop( newstack) = errStack; 
$$ pop( push( s. n ) ) = s; 
$$ top( newstack) == errNat; 
$$ top( push( s. n) ) == n; 
$$ isnewstack( news tack ) = true; 
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$$ isnewstack( push( s, n ) ) == false; 
end module Stack; 

Fig. 7/9 
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Notice that pushing an unsafe natural number on a safe stack results in 
a safe stack because only the first argument of the constructor push is 
requested to be safe. The safety function safeStack of Fig. 7/9 is given 
explicitly in Fig. 7/10. 

declare s: Stack; n: Nat; 
operation axioms 

safeStack( newstack ) == true; 
safeStack( push( s, n ) ) == safeStack( s ); 
safeStack( errStack) = false; 

Fig. 7/10 

Although the specification given in Fig. 7/9 is incomplete (the 
operations are only specified for safe operands), rapid prototyping is 
already possible. Two different approaches are possible when an error 
occurs. Firstly, one can always map the result of an operation with unsafe 
arguments onto an unsafe object errSort of the sort of the operation. 
Secondly, we can consider a large set of unsafe objects that provide a trace 
to the place where the error occurred. e.g.: 

tope pope errStack ) ) 

Second Step 

In a second step, information concerning error handling is added. In Fig. 
7/11 the specification of Fig. 7/9 is extended with error information in 
such a way that errors are propagated, except for the error recovery 
operation recover that returns its argument if this argument is a safe stack, 
and newstack otherwise. 

module Stack; 
import Bool, true, false, errBool from Bool; 
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Nat, errNat from Nat; 
export all; 
sort Stack; 
constructors 

news tack: - > Stack $$; 
push: $ Stack • Nat -> Stack $$; 
errS tack: - > Stack ??; 

operations 
pop: Stack - > Stack; 
top: Stack - > Nat; 
isnewstack: Stack - > Bool; 
recover: Stack - > Stack; 

declare s: Stack; n: Nat; 
constructor axiom 
! s == errStack; 

operation axioms 
$$ pope news tack) == errS tack; 
$$ pope push( s, n ) ) == s; 
$$ tope newstack) == errNat; 
$$ top( push( s, n ) ) == n; 
$$ isnewstack( news tack ) = true; 
$$ isnewstack( push( s, n) ) == false; 
$$ recover( s ) == s; 

?? pope s ) == errStack; 
?1 tope s ) == errNat; 
?? isnewstack( s ) == errBool; 
?? recover( s ) = news tack; 

end module Stack; 

Fig. 7/11 

--1 --
-- 2--
-- 3--
-- 4--
-- 5--
-- 6--
--7 --

-- 8 --
-- 9--

-- 10--
-- 11 --

Remember that the constructor axiom of Fig. 7/11 is equivalent to 

not safeStack( s ) => s = errStack: 

It states that all unsafe stacks are equal to errStack. 
Operation axiom 1 is equivalent to 

safeStack( newstack) => pope newstack) == errStack: 

Chap. 7 

the condition of which is always true, and therefore $$ may be omitted. 
Operation axiom 2 is equivalent to 

safeStack( push( s, n ) ) => pope push( s. n ) ) == s: 

Operation axiom 8 is equivalent to 

not safeStack( s ) => pope s ) == errStack: 
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Operation axioms 1. 2 and 8 together are equivalent to the following 
unconditional operation axiom. 

pope s) = 
if safeStack( s ) 

then 
case s of 

newstack: errStack; 
push( Sl. n ): Sl: 

otherwise -- unreachable -- errStack; 
end case 

else errStack 
end if; 

Notice that these transformations can be done in a mechanical way. 

7.5 Safety Conditions 

Although we can already specify many interesting abstract data types. the 
mechanism developed so far is not powerful enough to describe more 
complex data types. e.g .• bounded types. Therefore the markers $$ and ?? 
of the constructors part. will be extended to safety conditions. Safety 
conditions together with propagation markers will indicate whether a 
constructor denotes a safe or an unsafe object. 

To illustrate the need for safety conditions. consider the example of a 
bounded stack. e.g .. a stack that contains at most 100 elements. The 
constructor push cannot be marked by $$ or ?? because push( 
boundedstack. n ) may give a safe or an unsafe object. depending on the 
length of the stack. If the stack is safe and contains. e.g .• 61 elements. then 
the constructor push gives a safe object. But if the stack is safe and 
contains 100 elements. an unsafe stack is obtained because an overflow 
occurs. So the constructor push gives a safe object if and only if its first 
argument is a safe object and the following boolean term. called safety 
condition. is satisfied: 

length( boundedstack ) ~ 99 

A safety condition is a boolean term that is associated with a 
constructor. A constructor denotes a safe object if the requested arguments 
are safe objects and the safety condition of the constructor is true. But if 
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one of its requested arguments is unsafe or the safety condition yields 
either false or an exceptional object, the constructor denotes an unsafe 
object. The safety condition is written between dollar signs following the 
declaration of the constructor. Each variable used in a safety condition, is 
associated with an argument of the constructor (at most one variable may 
be associated with every argument). 

In the safety condition of the constructor push given in Fig. 7/12, the 
variable boundedstack is associated with the first argument of push. To 
make an automatic association possible between the variables of a safety 
condition and the arguments of the constructor, each variable has the same 
name as the sort of the associated argument (but starting with a lower case 
letter). If two or more arguments of a constructor have the same sort, the 
variable names are distinguished by a number that indicates the argument 
associated with it. The safety condition $ true $ may be abbreviated $$, the 
safety condition $ false $ may be abbreviated 11. 

In Fig. 7/12 the specification of a bounded stack without error handling 
is given. The stack size is limited to 100. The operation _ ~ _ is assumed 
to be defined in the module Nat. 

module BoundedStack; 
import Bool, true, false from Bool; 

Nat, zero, SllCC, _ ~ -' errNat from Nat; 
export all; 
sort BoundedStack; 
constructors 

news tack: - > BoundedStack $$; 
push: $ BoundedStack • Nat - > BoundedStack $ length( boundedstack ) ~ 99 $; 
errBoundedStack: -> BoundedStack 11; 

operations 
length: BoundedStack -> Nat; 
pop: BoundedStack - > BoundedStack; 
top: BoundedStack -> Nat; 
isnewstack: BoundedStack -> Bool; 
recover: BoundedStack - > BoundedStack; 

declare b: BoundedStack; n: Nat; 
operation axioms 
$$ length( news tack ) = zero; 
$$ length( push( b, n ) ) == succC length( b ) ) ; 
$$ pop( newstack) = errBoundedStack; 
$$ pop( push( h, n ) ) = h; 
$$ top( newstack ) = errNat; 
$$ top( push( b, n ) ) == n; 
$$ isnewstack( newstack ) = true; 
$$ isnewstack( push( b, n ) ) = false; 
$$ recover( b ) = b; 
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end module BoundedStack; 

Fig. 7/12 

Notice that a safety condition can be interpreted as a precondition on the 
constructor. 

In Fig. 7/13 the safety function safeBoundedStack is given, which can 
automatically be derived from the propagation marker and the safety 
conditions of Fig. 7/12. 

operation 
safeBoundedStack: BoundedStack -> Boo1; 

declare b: BoundedStack; n: Nat; 
operation axioms 

safeBoundedStack( newstack ) = true; 
safeBoundedStack( push( b, n ) ) = 
if 1engthC b ) ~ 99 

then safeBoundedStack( b ) 
else false 

end if; 
safeBoundedStack( errBoundedStack) = false; 

Fig. 7/13 

In Fig. 7/14 the specification of a bounded stack with error handling is 
given. 

module BoundedStack; 
import Boo1, true, false, errBoo1 from Boo1; 

Nat, zero, succ, _ ~ ..oJ errNat from Nat; 
export all; 
sort BoundedStack; 
constructors 

news tack: - > BoundedStack $$; 
push: $ BoundedStack * Nat -> BoundedStack $length( boundedstack) ~ 99 $; 
errBoundedStack: - > BoundedStack ??; 

operations 
length: BoundedStack -> Nat; 
pop: BoundedStack - > BoundedStack; 
top: BoundedStack -> Nat; 
isnewstack: BoundedStack -> Boo1; 
recover: BoundedStack - > BoundedS1ack; 

declare b: BoundedStack; n: Nat; 
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constructor axiom 
! b == errBoundedStack; 
operation axioms 
$$ length( newstack ) == zero; 
$$ length( push( b, n ) ) == succ( length( b ) ) ; 
$$ pop( news tack) = errBoundedStack; 
$$ pope push( b, n ) ) == b; 
$$ tope newstack) = errNat; 
$$ top( push( b, n)) == n; 
$$ isnewstack( news tack ) = true; 
$$ isnewstack( push( b, n ) ) = false; 
$$ recover( b ) = b; 

?? length( b ) == errNat; 
?? pop( b ) == errBoundedStack; 
?? top( b ) = errNat; 
?? isnewstack( b ) == errBool; 
17 recover( b ) = news tack; 

end module BoundedStack; 

Fig. 7/14 

Chap. 7 

Notice the mutual recursive definitions of the operation length and the 
safety function saf eBoundedStack. 

Remember that if b stands for a (safe) bounded stack of length 100. 

length( push( b, zero ) ) 

is equal to errNat and not to 101 because push( b, zero) is not safe and. as 
a consequence, the second operation axiom must not be applied. 

A more refined error handling for the bounded stack is obtained by 
distinguishing between two unsafe objects: underflow and overflow. The 
resulting specification is given in Fig. 7/15. 

module BoundedStack; 
import Bool, true, false, errBool from Bool; 

Nat, zero, succ, _ ~ ~ errNat from Nat; 
export all; 
sort BoundedStack; 
constructors 

news tack: - > BoundedStack $$; 
push: $ BoundedStack· Nat -> BoundedStack $length( boundedstack) ~ 99 $; 
underflow: - > BoundedStack 17; 
overflow: - > BoundedStack 17; 

operations 
length: BoundedStack -> Nat; 
pop: BoundedStack - > BoundedStack; 
top: BoundedStack -> Nat; 
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isnewstack: BoundedStack -> Bool; 
recover: BoundedStack -> BoundedStack; 

declare b: BoundedStack; n: Nat; 
constructor axioms 
! push( $ b, n ) = overflow; 

push( ! b, n ) == b; 
operation axioms 
$$ length( news tack ) = zero; 
$$ length( push( b, n ) ) == succ( length( b ) ); 
$$ pop( news tack) == underflow; 
$$ pope push( b, n ) ) = b; 
$$ top( newstack) == errNat; 
$$ top( push( b, n ) ) = n; 
$$ isnewstack( news tack ) = true; 
$$ isnewstack( push( b, n ) ) = false; 
$$ recover( b ) = b; 

?? length( b) == errNat; 
11 pop( b) = b; 
11 tope b ) == errNat; 
11 isnewstack( b ) = errBool; 
?? recover( b ) = news tack; 

end module BoundedStack; 

Fig. 7/15 
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The first constructor axiom of Fig. 7/15 states that when a safe stack 
becomes unsafe after pushing a natural number onto it, then an overflow 
occurs. The second constructor axiom of Fig. 7/15 indicates that if a stack 
is unsafe. pushing a natural number has no effect (i.e. an underflow 
remains an underflow and an overflow remains an overflow). The 
constructor axioms of Fig. 7/15 are equivalent to 

constructor axioms 
safeBoundedStack( b) and not safeBoundedStack( push( b, n)) => 

push( b, n ) == overflow; 
not safeBoundedStack( b ) => push( b, n ) = b; 

Fig. 7/16 

The information whether a stack is safe or unsafe. cannot be found in the 
constructor axioms. This information is localized in the safety functions. 
The safety function safeBoundedStack is equivalent to 
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operation 
safeBoundedStack: BoundedStack -> Bool; 

declare b: BoundedStack; n: Nat; 
operation axioms 

safeBoundedStack( newstack) = true; 
safeBoundedStack( push( b, n)) = 
if length( b) ~ 99 

then safeBoundedStack( b ) 
else false 

end if; 
safeBoundedStack( underflow) = false; 
safeBoundedStack( overflow) = false; 

Fig. 7/17 
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Remember that if b is unsafe, length( b ) yields errNat, see Fig. 7/15. 
In that case, length( b ) ~ 99 will yield errBool. see Fig. 7/25. Because of 
the definition of the ifthenelse operation, see Fig. 7/26, the right-hand side 
of the second operation axiom in Fig. 7/17 will then yield false. 

The Parameterized Bounded Array 

Another interesting example is the specification of a bounded array, Le. an 
array with indices lying between a given lower and upper bound. 
Assigning to a bounded array with an index not lying between these 
bounds yields an unsafe bounded array. In Fig. 7/18 a parameterized 
specification with error detection only is given. 

scheme BoundedArrayScheme [ 
requirement Attribute; 

export all; 
sort Attribute; 
operation 

initial: -> Attribute; 
end requirement Attribute; 

req uiremen t OrderedIndex; 
import Bool, true, _ and ..oJ _ or _ from Bool; 
export all; 
sort Index; 
operations 

= : Index· Index -> Bool; = ~-_: Index· Index -> Bool; 
declare i, it> i2, i3: Index; 
theorems 

($i = $i) = true; 
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]; 

( $it = $i2 ) = ( $i2 = $it ); 
( $it = $i2 ) and ( $i2 = $i3 ) ~ ($it = $i3 ) == true; 
($it ~ $i2 ) or ($i2 ~ $it ) == true; 
($it ~ $i2 ) and ( $i2 ~ $it ) ~ ( $it = $i2 ) = true; 
( $it = $i2 ) ~ ($it ~ $i2 ) == true; 
($it ~ $i2") and ($i2 ~ $i3 ) ~ ($it ~ $i3 ) = true; 

end requirement OrderedIndex; 

module BoundedArray; 
import not -> _ and _ from Bool; 

all from Attribute, OrderedIndex; 
export all; 
sort BoundedArray; 
constructors 

empty: $ Index • $ Index -> BoundedArray $$; 
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_ [ _ / _]: $ BoundedArray • Attribute • $ Index - > BoundedArray 
$ ( lwb( boundedArray ) ~ index) and ( index ~ upb( boundedArray ) ) $; 

operations 
lwb, upb: BoundedArray -> Index; 
read: BoundedArray· Index -> Attribute; 

declare ba: BoundedArray; at, att. at2: Attribute; i, it> i2, i3: Index; 
constructor axioms 

not( it = i2 ) ~ 
$ ( ba [ att / it ] [ at2 / i2 ] ) = 
$ ( ba [ at2 / i2 ] [ att / it ]); 

it = i2 ~ $( ba [ att lit ][ at2 / i2 )) = $( ba [ at2 li2 )); 
operation axioms 
$$ lwb( empty( it. i2 ) ) == it; 
$$ upb( empty( it. i2 ) ) = i2; 
$$ lwb( ba [ at / i ] ) = lwb( ba ); 
$$ upb( ba [ at / i ] ) = upb( ba ); 
$$ read( empty( it. i2 ), i3 ) == initial; 
$$ read( ba [ at / it ], i2 ) = 

if it = i2 
then at 
else read( ba, i2 ) 

end if; 
end module BoundedArray; 

end scheme BoundedArrayScheme; 

Fig. 7/18 

Notice that requirement OrderedIndex implicitly requires a safety function 
safelndex by using safety markers. The safety function safeBoundedArray 
of module BoundedArray is equivalent to the one of Fig. 7/19. 

operation 
safeBoundedArray: BoundedArray -> Bool; 

declare ba: BoundedArray; i, it. i2: Index; at: Attribute; 
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operation axioms 
safeBoundedArray( empty( i1 , i2 ) ) = safeIndex( i1 ) and safeIndex( i2 ); 
safeBoundedArray( ba [at / i]) == 

if (lwb( ba ) ~ i) and ( i ~ upb( ba ) ) 
then safeBoundedArray( ba) and safeIndex( i) 
else false 

end if; 

Fig. 7/19 

Error handling is added in Fig. 7/18 resulting in Fig. 7/20. 

scheme BoundedArrayScheme [ 
requirement Attribute; 

export all; 
sort Attribute; 
operation 

initial, errA ttribute: - > Attribute; 
end requirement Attribute; 

req uiremen t OrderedIndex; 
import Bool, true, errBool, _ and -' _ or _ from Bool; 
export all; 
sort Index; 
operations 

= : Index· Index -> Bool; = ~-_: Index· Index -> Bool; 
declare i, it> i2, i3: Index; 
theorems 

( $i = $i ) == true; 
( $i1 = $i2 ) = ( $i2 = $i1 ); 

( $i1 = $i2 ) and ( $i2 = $i3 ) ~ ($i1 = $i3 ) == true; 
($i1 ~ $i2 ) or ( $i2 ~ $i1 ) = true; 
( $il ~ $i2 ) and ( $i2 ~ $il ) => ( $i1 = $i2 ) == true; 
( $i1 = $i2 ) => ($i1 ~ $i2 ) = true; 
($i1 ~ $i2 ) and ( $i2 ~ $i3 ) ~ ($i1 ~ $i3 ) == true; 
?il ~ ?i2 = errBool; 

end requirement OrderedIndex; 
]; 

module BoundedArray; 
import not -' _ and _ from Bool; 

all from Attribute, OrderedIndex; 
export all; 
sort BoundedArray; 
constructors 

empty: $ Index· $ Index -> BoundedArray $$; 
_ [ _ / _]: $ BoundedArray • Attribute • $ Index - > BoundedArray 
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$ ( lwb( boundedArray ) ~ index) and ( index ~ upb( boundedArray ) ) $; 
operations 

lwb, upb: BoundedArray -> Index; 
read: BoundedArray • Index - > Attribute; 
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declare ba: BoundedArray; at, atb at2: Attribute; i, ib i2, i3: Index; 
constructor axioms 

note il = i2 ) => 
$ ( ba [ atl / il ][ at2 / i2 ]) = 

$( ba [ at2 / i2 ][ atl lil ]); 
il = i2 => $( ba [ atl / il ][ at2 li2 ]) == $( ba [ at2 / i2 ]); 

operation axioms 
lwb( empty( ib i2 ) ) = il; 
upb( empty( ib i2 ) ) == i2; 
lwb( ba [ at / i ] ) = lwb( ba ); 
upb( ba [ at / i ] ) = upb( ba ); 

'$$ read( empty( it. i2 ), i3 ) == initial; 
$$ read( ba [ at / il ], i2 ) = 

if i l = i2 
then at 
else read( ba, i2 ) 

end if; 
11 read( ba, i) = errAttribute; 

end module BoundedArray; 
end scheme BoundedArrayScheme; 

Fig. 7120 

Another possibility is that we require that, after an object has been 
assigned with a wrong index, all objects that are later assigned with a 
correct index must be readable. If BoundedArrayScheme is instantiated by 
taking as attributes the boolean values and as indices the natural numbers, 
it must. e.g., be possible to read the element with index 3 of the array 

empty( 1, 3 ) [ true / 1 ] [ true / 12 ] [ true / 3 ] 

In Fig. 7/21 the required error handling is obtained by modifying the 
safety function: the first argument of the assign constructor is not 
requested to be safe. The constructor empty returns a safe bounded array 
if and only if its lower and upper bound are safe indices. The assign 
constructor returns an unsafe bounded array if and only if the index of the 
last assigned element is an unsafe index or this index is not lying between 
the given bounds. 

scheme BoundedArrayScheme [ 
-- ••. see Fig. 7/20 --

constructors 
empty: $ Index * $ Index -> BoundedArray $$; 
assign: BoundedArray * Attribute * $ Index -> BoundedArray 

$ ( lwb( boundedArray ) ~ index) and ( index ~ upb( boundedArray ) ) $; 

-- ••• see Fig. 7/20 --
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end scheme BoundedArrayScheme; 

Fig. 7121 

The safety function safeBoundedArray is equivalent to the one of Fig. 
7/22. 

operation 
safeBoundedArray: BoundedArray -> Bool; 

declare ba: BoundedArray; i, iI, i2: Index; at: Attribute; 
operation axioms 

safeBoundedArray( empty( il> i2 ) ) = safeIndex( il ) and safelndex( i2 ); 
safeBoundedArray( ba [ at / i ] ) = 
if (lwb( ba ) ~ i )and ( i ~ upb( ba ) ) 

then safeIndex( i) 
else false 

endi!; 

Fig. 7122 

If BoundedArrayScheme of Fig. 7/21 is instantiated by taking as 
attributes the boolean values and as indices the natural numbers, we prefer 
the bounded array 

empty( errNat, 5 ) [ true / 2 ] 

to be unsafe. This bounded array is unsafe thanks to the theorem 

in the requirement OrderedIndex. Indeed, the safety condition applied to 
the given bounded array does not result in true. errNat ~ 2 results in 
errBool. The boolean operation and propagates the error object. When the 
if-argument of an ifthenelse construct is not equal to true, the ifthenelse 
construct is equivalent to its else-argument, which is false. As a 
consequence, the safety condition applied to the given bounded array yields 
false. 

The Peekstack 

A semi-constructive specification of the peekstack, which was discussed in 
Section 2.18, is given in Fig. 7123 using our error handling notation. 
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scheme PeekstackScheme [ 
requirement Item; 

export all; 
sort Item; 
operation 

error: -> Item; 
end requirement Item; 

]; 

module Peeks tack; 
import true, false from Bool; Item, error from Item; 
export all except shove; 
sort Peeks tack; 
constructors 

newstack: -> Peeks tack $$; 
push: $ Peekstack * Item -> Peekstack 

$ case peeks tack of 
shove( s, it ): false; 
otherwise: true; 

end case $; 
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shove: $ Peekstack * Item -> Peeks tack $$; -- hidden operation-
err: - > Peekstack 11; 

operations 
pop: Peeks tack - > Peekstack; 
read: Peekstack -> Item; 
return: Peeks tack - > Peeks tack; 
down: Peeks tack - > Peeks tack; 

declare s: Peekstack; it: Item; 
constructor axiom 

?s=err; 
operation axioms 
$$ pop( news tack ) = err; 
$$ pop( push( s, it ) ) == s; 
$$ pop( shove( s, it ) ) = err; 
$$ read( news tack ) = error; 
$$ read( push( s, it ) ) = it; 
$$ read( shove( s, it ) ) = read( s ); 
$$ return( news tack ) = newstack; 
$$ return( push( s, it ) ) = push( s, it ); 
$$ return( shove( s, it) ) = push( return( s ), it ); 
$$ down( newstack ) == err; 
$$ down( push( s, it ) ) = shove( s, it ); 
$$ down( shove( s, it) ) = shove( down( s ), it ); 

11 pop( s ) = err; 
11 read( s ) = error; 
11 return( s ) = err; 
11 down( s ) = err; 

end module Peekstack; 
end scheme PeekstackScheme; 

Fig. 7123 
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7.6 Miscellanies 

The Boolean Abstract Data Type 

In the previous sections the boolean abstract data type Bool was assumed 
to be defined in the usual way. All boolean operations (but the ifthenelse 
construct, see below) propagate errors. The only boolean error object is 
denoted by errBool. The predefined module Bool is equivalent to Fig. 7124. 

module Bool 
export all; 
sort Bool; 
constructors 

true, false: -> Bool $$; 
err Boo 1: - > Bool ??; 

operations 
not _: Bool-> Bool; 
_ and _: Bool • Bool - > Bool; 
_ or _: Bool • Bool-> Bool; 
_ => _: Bool • Boo1-> Bool; 
_ <= _: Boo1* Bool-> Bool; 
_ <=> _: Bool* Bool-> Boo1; 
_ = _: Bool * Bool-> Bool; 

declare b, blo b2 , b3 : Bool; 
operation axioms 

not true = false; 
$b and true == $b; 
$b or true = true; 
true => $b = $b; 
$b <= true = $b; 
true <=> $b = $b; 

not errBool == errBool; 
?bl or ?b2 = errBool; 
?bl < = ?b2 = errBool; 

b=b=true; 
true = false = false; 
false = true = false; 
errBool = true == false; 

theorems 

not false == true; 
$b and false == false; 
$b or false = $b; 
false => $b == true; 
$b < = false == true; 

false <=> $b = not $b; 

?bl and ?b2 == errBool; 
?bl => ?b2 == errBool; 

?bl <=> ?b2 == errBool; 

true = errBool = false; 
false = errBool = false; 

errBool = false = false; 

band b=b; borb=b; 
bi and b2 = b2 and bl ; bi or b2 == b2 or bl ; 

bi and ( bi or $b2 ) == bl ; bi or ( bl and $b2 ) = bl ; 

$b and not $b = false; $b or not $b == true; 
not not $b = $b; 
( bi and b2 ) and b3 = bi and ( b2 and b3 ); 

( bl or b2 ) or b3 = bi or ( b2 or b3 ); 

bl and ( b2 or ~ ) = ( bi and b2 ) or ( bi and b3 ); 

bl or ( b2 and ~ ) == ( bl or b2 ) and ( bi or b3 ); 
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$bl = > $b2 == if $bl then $b2 else true end if; 
bl <= b2 == b2 => bl ; 

bl <=> b2 == (bl => b2) and (bl <= b2); 
bl = b2 == b2 = bl ; 

(bl = b2) and (b2 = b3) => (bl = b3); 
end module Bool; 

Fig. 7124 
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The Abstract Data Type of the Natural Numbers 

In Fig. 7/25 a specification with error handling is given for the natural 
numbers including equality and inequality operations. 

module Nat; 
import Bool, true, false, errBool, _ or _ from Bool; 
export all; 
sort Nat; 
constructors 

zero: -> Nat $$; 
suee: $ Nat -> Nat $$; 
errNat: -> Nat ??; 

operations 
pre: Nat -> Nat; 
add: Nat * Nat -> Nat; 
mult: Nat· Nat -> Nat; 
_ = _: Nat * Nat -> Bool; 

< Nat * Nat -> Bool; = ~ =: Nat * Nat -> Bool; 
declare n, nl, n2: Nat; 
constructor axiom 
! n=errNat; 
operation axioms 
$$ pre( zero) = errNat; 
$$ pre( suee( n ) ) = n; 
$$ add( zero, n ) == n; 
$$ add( suee( nl ), n2 ) == suee( add( nl, n2 ) ); 
$$ mult( zero, n) == zero; 
$$ mult( suee( nl ), n2 ) == add( n2, mult( nl, n2 ) ); 
$$ ( zero = zero) = true; 
$$ ( suee( n ) = zero) == false; 
$$ ( zero = suee( n )) = false; 
$$ ( suee( nl ) = suee( n2 ) ) = nl = n2; 
$$ ( n < zero) = false; 
$$ ( zero < suecC n ) ) = true; 
$$ ( suecC nl ) < succC n2 ) ) == nl < n2; 
$$ ( suecC nl ) ~ suecC n2 ) ) = (nl < n2 ) or ( nl = n2 ) ; 

?? pre( n ) == errNat; 
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?? add( nl> n2 ) = errNat; 
?? mult( nl, n2 ) = errNat; 
$ nl = I n2 = false; 
I nl = $ n2 = false; 
I nl = I n2 = true; 

?? (nl < n2 ) == errBool; 
?? (nl ~ n2 ) = errBool; 

end module Nat; 

Fig. 7125 

Ifthenelse Construct 

Chap. 7 

The ifthenelse construct is an example of a recovery operation. For each 
sort X the language-defined ifthenelse construct is equivalent to 

operation 
if _ then _ else _ end if: Bool • X' X -> X; 

declare b: Bool; Xl> X2: X; 
operation axioms 

if true then Xl else x2 end if = Xl; 
if false then Xl else x2 end if == x2; 
if Ib then Xl else x2 end if = x2; 

Fig. 7126 

Therefore, the expression 

ifn=O 
then Xl 

else Xl / n 
end if 

where the variable n stands for a natural number and / is the division 
of natural numbers, results in Xl when n is bound with O. Remember that 
the order of evaluation has not been defined. 
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Markers and Case Constructs 

If a safety or an unsafety marker is used in the choice of a case arm in an 
axiom. this marker is only related to the choice of the case arm and not to 
the whole axiom. E.g .. 

declare b, b1: Stack; n: Nat; 
operation axiom 

f( b, n) = .•• 
case push( b, n ) of 

$ b1:· .. 

I b1: ••• 

end case ••• ; 

Fig. 7/27 

does not mean that b1 , i.e. push( b, n ), must be safe as well as unsafe, 
which is in conflict. It means that if b1 is safe. the first case arm must be 
taken. otherwise b1 is unsafe and the second case arm must be taken. 

Cartesian Products of Sorts 

If Cartesian products of sorts (see Section 4.11) are used. a composed object 
is safe if and only if all its elementary objects are safe. Assume. e.g .• that 
a sort Comer is defined as the Cartesian product of the sorts Street and 
Avenue: 

sort Corner = Street· Avenue; 

Fig. 7128 

then it stands for 

sort Corner; 
constructor 

(-J _): $ Street· $ Avenue -> Corner $$; 
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operations 
streetOf _: Corner - > Street; 
avenueOf _: Corner -> Avenue; 
_ [ _ I street ]: Corner • Street - > Corner; 
_[ _I avenue]: Corner· Avenue -> Corner; 
-- safeCorner: Corner -> Boo1; 

declare s: Street; a: Avenue; c: Corner; 
operation axioms 

streetOf ( s, a ) = s; 
avenueOf ( s, a ) = a; 
c [ s I street] == ( s, avenueOf c ); 
c [ a I avenue] == ( streetOf c, a); 
-- safeCorner( (s, a)) = safeStreet( s) and safeAvenue( a); 

Fig. 7129 

Uniqueness and Completeness Constraints 

Chap. 7 

The attentive reader may have noticed that the uniqueness and 
completeness constraints are not always met. E.g .. in Fig. 7/14. operation 
axioms of the form 

$$ length( errStack ) == ... ; 
$$ pope errStack ) == ... ; 
$$ tope errStack) = ... : 
$$ isnewstack( errStack ) == ... : 

have been omitted because they would never be applied. We assumed that 
the checker of the uniqueness and completeness constraints is intelligent 
enough to handle such situations. 

Shorthand Notation and hnport Clauses 

Sorts. constructors and operations that are not explicitly written down in a 
module or a requirement. need not be mentioned in the import clause of the 
module or the requirement. E.g .. the sort Bool and the constructors true 
and false were not mentioned in the import clause of module 
BoundedArray of Fig. 7/18. although they were used in the equivalent 
specification of the safety function in Fig. 7/19. 
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Parameterized Specifications with Error Handling 

Up to now. the parameterization concept and error handling have been 
defined independently in order to obtain a language with orthogonal 
features. The relation between them is that when an operation safeX is 
explicitly required in a requirement. the operation safeX must be explicitly 
bound with the safety function of the sort that is bound with X. For 
instance. if the requirement 

requirement Item; 
import Bool from Bool; 
export all; 
sort Item; 
operation 

safeItem: Item -> Bool; 
end requirement Item; 

Fig. 7/30 

is required. the operation safeItem must be bound with the safety function 
of the sort that is bound with Item. If the operation safeX is implicitly 
required. e.g .. by using safety markers as in requirement OrderedIndex of 
Fig. 7/20. it will implicitly be bound with the safety function of the sort 
that is bound with X. It is obvious that in both cases a safety function 
must have been defined for the sort that is bound with X. 

7.7 Bibliographic Notes 

[Guttag78] treats neither error propagation nor error recovery. In that 
article. as soon as an error is detected. UNDEFINED is returned. For 
example. 

TOP( Stack) - > item U { UNDEFINED} 

TOP( NEWSTACK ) = UNDEFINED 

If UNDEFINED is a value. what is its sort? Or is TOP a partial function? 
Guttag gives no precise meaning of UNDEFINED (he kept the meaning 
undefined). We believe that a kind of incomplete specification is intended. 
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analogous to the first step of our error specification method. Eventually. 
one must indicate what the operations do to UNDEFINED. otherwise the 
benefit from working with algebras is lost [Goguen78]. 

[Goguen78] defines an error object and an OK function for each sort. 
Axioms are replaced by conditional error axioms. These are axioms in 
which terms are checked to be OK. This method is hardly supported by 
their algebraic specification language. leading to a large amount of axioms 
for definitions of OK functions and for error and OK propagation. Error 
recovery is not provided. The method we proposed can be viewed as an 
improved extension of this technique. The safety function corresponds to 
the OK function introduced in [Goguen78]. 

In OBJ2 [Goguen84. Futatsugi85. Goguen85] subsorts are defined. see 
Section 3.6. Although this concept can be defined within the framework of 
many-sorted initial algebras using implicit coercion and retraction 
functions between the sorts [Futatsugi85]. a new mathematical foundation. 
called Order-Sorted Algebra, is used in [Goguen85. Goguen87b]. For 
example. the sort NeStack of non-empty stacks is defined as a subsort of 
the sort Stack. The operations top and pop are defined for non-empty 
stacks only. If. e.g .• the operation top is applied to a stack. the stack is 
implicitly retracted (inverse coercion) to a non-empty stack. This is a kind 
of run-time type checking. If an error occurs. the rest of the term is 
further reduced. In the example of the non-empty stacks the result is 
then. e.g .. pope retract( newstack ) ). These objects are in fact unsafe 
objects. No error recovery is provided although error handlers are 
suggested [Futatsugi85. Goguen87c]. but at the moment they have not yet 
been published. 

Another problem is that the mechanism of subsorts is not powerful 
enough for. e.g .. bounded stacks. Therefore. sort constraints, which are 
related to our safety conditions. are introduced [Goguen84. Goguen85]. 

A new mathematical foundation is developed by Gogolla [Gogolla84a]. 
The sets of many-sorted algebras are heterogeneous: they are divided into 
ok and error objects, corresponding with safe and unsafe objects 
respectively. The functions are divided into two classes: o.k. and unsafe 
functions. Only unsafe functions may introduce errors when applied to ok 
objects. This guarantees that whenever an expression consisting of ok 
functions only is applied to ok arguments. it will result in an ok object. 
Another important characteristic is that two different types of variables 
are introduced for the same sort. Variables to which only ok objects may 
be bound. and variables to which both ok and error objects may be bound. 
The drawback is that functions can only be marked as o.k. or unsafe. this 
is not powerful enough for more complex data types. e.g .• bounded stacks. 
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In the algebraic specification language PLUSS [Bidoit85b] the notions of 
multi-target operators and multi-target algebras are introduced. The basic 
idea is to split safe and unsafe objects into different sets. But this method 
is not adequate enough for bounded types. In [Bernot86] a new 
mathematical foundation is proposed. called exception algebras. Labels 
may be associated with terms. This label information may be used in the 
axioms. This formalism is powerful. but it is also very complex. The 
formalism leaves the classical framework of many-sorted initial algebras. 
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"Everything should be built top-down. 

except the first time." 
lusrlganteslfortune 

Working with abstract implententations. sometimes called data 
refinentents. is a powerful method to design and implement algebraic 
specifications. It enables top-down design. top-down verification and also 
top-down testing. As an introduction to abstract implementations first an 
intuitive discussion of the general principles of the method is given. These 
principles are then illustrated by a simple example. A detailed treatment 
of abstract implementations will be worked out in the subsequent sections. 

When working with abstract implementations. the software life cycle 
does not consist of a single design and a single implementation phase (as 
shown in Fig. 1/1). but it has several design-implementation levels 
forming a pyramid-like structure. where the implementation at one level is 
considered as the design-specification at the lower level. The lower the 
level. the lower the degree of abstraction. i.e. the number of 
implementation details increases. An example of such a pyramid-like 
structure. called design-implententation structure in the sequel. is given in 
Fig. 8/1. This example will be thoroughly discussed further on. One of 
the main reasons why the idea of abstract implementations is so important 
is that each level can be tested through rapid proto typing and verified 
using equational reasoning (see Section 2.13) and induction (see Section 
2.17). before the lower levels need be constructed. Therefore. working 
with abstract implementations improves correctness. extendibility. 
reusability. modularity and continuity of software systems. By combining 
the technique of abstract implementations with the technique of 
parameterization. a high degree of reusability can be obtained. It will be 
illustrated by two examples: the stack and the symbol table. 

Given an abstract data type A consisting of a set of objects and a 
number of functions. As a first step. the abstract data type A will be 
algebraically specified by a module A defining among others the sort A. In 
the sequel. specifications will be (semi-)constructive (see Chapter 4). So. 
in the module A a distinction is made between constructors and operations. 
Clearly. A may import from other modules. The module A together with 
all its imported (directly and indirectly) modules constitute the highest 
level of the design-implementation structure. Due to rapid prototyping 
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based on direct implementation (see Chapter 4). the modules at this level 
can be directly executed and tested so that experiments with the software 
system are possible at an early stage of its development. 

As an example. consider the highest level of the design-implementation 
structure for the symbol table in Fig. 8/1. The module Symboltable 
defines the sort Symboltable by means of a number of constructors and 
operations. The module Symboltable imports from the modules Identifier. 
Attribute and Bool. The specification details of the module Symbol table 
will be given in Section 8.5. 

In a second step, the module A is implemented by assigning a specific 
meaning to the objects (constructors in A) and functions (operations in A) 
of the abstract data type A. The implementation of module A is itself a 
module. called implementation module and denoted .lA. The 
implementation module .lA is defined in terms of the sort. constructors and 
operations of another module B. Clearly • .lA may still import from other 
modules. The implementation module .lA and all its imported modules 
constitute the second level of the design-implementation structure. As 
with the first level of the structure. the modules of the second level can be 
directly executed and tested by rapid prototyping based on direct 
implementation. By using the implementation module .lA as 
implementation for module A instead of using the direct implementation 
of module A. direct execution at the first level will be more efficient. 

~ 
A B means A imports from B 

6 
I 
I 
I 
I 
I 
I 

means(3)is specified by A , 
A 

Fig. 8/1 (continued) 
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During the second step. one can also verify that the implementation ~A 
meets its specification A. Correctness of implementation will be further 
explained in Section 8.3. An important aspect of the technique of abstract 
implementations is that rapid prototyping and verification at level 2 is 
based on the specifications of the imported modules of ~A. but not on their 
implementations. 

In our example shown in Fig. 8/1. the symbol table is implemented as a 
stack of mappings from identifiers onto attributes. The programs 
implementing the symbol table have the form of axioms. These programs 
constitute the implementation module ~Symboltable. which is defined in 
terms of the sort. constructors and operations imported from module 
Stack. ~Symboltable also imports from the modules Mapping. Identifier. 
Attribute and Bool. All these modules constitute level 2 of the design
implementation structure of the symbol table. 

In a next step. one of the modules for which no implementation module 
is provided. can be implemented in turn as explained in step 2. It yields 
the implementation module ~C and a number of modules imported by ~C. 
Hereafter. all modules for which no implementation modules are yet 
provided constitute a next level. This process of implementation 
refinement goes on until one obtains a level of modules that has a direct 
implementation that meets the claimed efficiency requirement. Consider 
again the symbol table as shown in Fig. 8/1. The stack is implemented by 
an ArrayNat object. Each ArrayNat object consists of an array of 
mappings and a natural number referring to the first free array entry. The 
programs implementing the module Stack constitute the implementation 
module ~Stack. The implementation module ~Stack imports from modules 
ArrayNat. Array. Mapping. Nat and Bool. Level 3 of the design
implementation structure consists of the modules ~Symboltable. ~Stack. 
Mapping. ArrayNat. Array. Nat. Identifier. Attribute and Bool. Direct 
execution at level 3 is already much more efficient than at level 2. Leve14 
can be obtained by providing an implementation for. e.g .. Mapping. This 
implementation of Mapping can be constructed independently from the 
implementation of Stack. At level 4. Mapping is implemented by a module 
in which an efficient hashcoding technique is used for the retrieval of 
information. All specification details of the four-level structure of the 
Symboltable. as shown in Fig. 8/1. will be given in Section 8.5. 
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8.1 Example of the Stacks 

In this section the method of abstract implementations is introduced by 
means of a simple example: the stack of natural numbers. As a first 
approximation. error handling. error recovery and parameterization are not 
considered. They will be discussed in Sections 8.4 and 8.5. Precise 
definitions of the concepts of abstract implementations will be given in 
Section 8.2. The design-implementation structure is shown in Fig. 8/2. 

8 
level 1 

level 2 

Fig. 8/2 

I 
I 
I 
I 
I 

t~ 
Stack Nat Bool 

I 
I 
I 
J 
I 

• ---=< ~--------J.Stack ArrayNat Array Nat Boo1 

~ 

At level 1. we have the module Stack specifying the abstract data type 
Stack. Stack imports from the modules Nat and Boo1. At level 2. the 
module Stack is implemented yielding the implementation module !Stack. 
which is defined in terms of the module ArrayNat. defining pairs of arrays 
and natural numbers. The implementation module !Stack imports from 
the modules ArrayNat. Array. Nat and Boo1. 

The Module Stack 

module Stack; 
import Boo1. true. false from Bool; 
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Nat, zero from Nat rename Nat as Item, zero as errItem; 
export all; 
sort Stack; 
constructors 

newstack: - > Stack; 
push: Stack' Item -> Stack; 

operations 
pop: Stack - > Stack; 
top: Stack - > Item; 
replace: Stack • Item -> Stack; 
isnewstack: Stack - > Bool; 

declare s: Stack; it, itl, it2: Item; 
operation axioms 

pop( news tack ) == newstack; 
pop( push( s, it ) ) = s; 
tope newstack) = errItem; 
top( push( s, it ) ) == it; 
replace( news tack, it ) == news tack; 
replace( push( s, itl ), it2 ) == push( s, it2 ); 
isnewstack( news tack ) = true; 
isnewstack( push( s, it) ) = false; 

end module Stack; 

Fig. 8/3 

The Module !Stack 

module !Stack; 
import ArrayNat, ( _, _), arrayOf -J natOf _ from ArrayNat; 

Array, empty, _ [ _ / _], read from Array; Bool from Bool; 
Nat, zero, succ, pre, _ = _ , _ < _ from Nat 

rename Nat as Item, zero as 0, zero as errItem, succ as _ + 1, pre as _ - 1; 
operations 

!newstack: -> ArrayNat; 
!push: ArrayNat' Item -> ArrayNat; 
!pop: ArrayNat -> ArrayNat; 
hop: ArrayNat -> Item; 
heplace: ArrayNat' Item -> ArrayNat; 
!isnewstack: ArrayNat - > Bool; 

declare an: ArrayNat; it: Item; 
operation axioms 

!newstack == ( empty, 0 ); 
!push( an, it) == ( arrayOf an [ it / natOf an ], natOf an + 1 ); 
!pop( an) = 

if natOf an = 0 
then an 
else ( arrayOf an, natOf an - 1 ) 

end if; 
hop( an) = 

if natOf an = 0 



www.manaraa.com

252 Abstract Implementations 

then errItem 
else read( arrayOf an, natOf an - 1 ) 

end if; 
!replace( an, it ) == 

if natOf an = 0 
then an 
else ( arrayOf an [ it I natOf an - 1 ], natOf an ) 

end if; 
!isnewstack( an ) = natOf an = 0; 

end module !Stack; 

Fig. 8/4 

The Module ArrayNat 

module ArrayNat; 
import Array from Array; Nat from Nat; 
export all; 
sort ArrayNat = Array • Nat; 
-- As explained in Section 4.11, the Cartesian product stands for: 

sort ArrayNat; 
constructor 

(_, _): Array· Nat -> ArrayNat; 
operations 

arrayOf _: ArrayNat -> Array; 
natOf _: ArrayNat -> Nat; 
_[ _I array]: ArrayNat· Array -> ArrayNat; 
_ [ _ I nat ]: ArrayNat • Nat - > ArrayNat; 

declare a: Array; n: Nat; an: ArrayNat; 
operation axioms 

arrayOf ( a, n ) = a; 
natOf ( a, n ) = n; 
an [ a I array] == ( a, natOf an ); 
an [ n I nat] == ( arrayOf an, n ); 

end module ArrayNat; 

Fig. 8/5 

The Module Array 

module Array; 
import Bool, true, false from Bool; Nat, zero, _ = _ from Nat 

Chap. 8 
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rename Nat as Index, Nat as Attribute, zero as initial; 
export all; 
sort Array; 
constructors 

empty: -> Array; 
_ [ _ / _]: Array * Attribute * Index - > Array; 

operations 
read: Array * Index -> Attribute; 
isundefined: Array * Index -> Bool; 

declare a: Array; i, i1 , i2: Index:· at, atl, at2: Attribute: 
constructor axioms 

not ( i1 = i2 ) ~ ( ar [ atl li1 ][ at2 li2 ]) = ( ar [ at2 li2 ][ atl li1 ]): 

( ar [ atl / i ] [ at2 / i ] ) = ( ar [ at2 / i ] ): 
operation axioms 

isundefined( empty, i) == true: 
isundefined( a [ at / i1 ], i2 ) = 

if i1 = i2 then false else isundefined( a, i2 ) end if; 
read( empty, i ) = initial: 
read( a [ at li1 ], i2 ) = 

if i1 = i2 then at else read( a, i2 ) end if: 
end module Array; 

Fig. 8/6 

Notice that the facility of renaming sorts, constructors and operations 
that are imported from other modules enhances readability. As an 
example, sort Nat is imported by the modules Stack and Array, but 
renamed differently. Stack and Array have different views on the module 
Nat. The module Stack uses natural numbers as items (Item), whereas 
Array uses natural numbers as indices (Index) and attributes (Attribute). 
These views are made explicit by the renaming facilities. In Section 8.4 
where the example is worked out with schemes, the elements Item, Index 
and Attribute will play the role of formal parameters. 

At the lowest level, the stack objects are implemented by means of 
pairs of arrays and natural numbers, see implementation module ~Stack in 
Fig. 8/4. Such a natural number represents the array index (relative 
address), indicating the first free entry in the array. Indices start from O. 
As an example, consider the term 

pope push( push( push( newstack, 10 ),20 ), 30 )) 

This term denotes an object of sort Stack. This object is implemented (as 
defined by the implementation module ~Stack) as a pair (ar, 0. The array 
ar contains 10 at index O. 20 at index 1 and 30 at index 2. The value of i is 
2. 

The implementation module ~Stack. see Fig. 8/4. defines two kinds of 
operations: the operations implementing the data part (constructors 
newstack and push) of the module Stack and the operations implementing 
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the procedure part (operations pop, top, replace and isnewstack) of the 
module Stack. The former operations are called data representation 
operations. The latter operations are called procedure implementation 
operations. The data representation operations of iStack are inewstack and 
ipush. The procedure implementation operations of iStack are ipop, hop, 
ireplace and iisnewstack. Both data representation and procedure 
implementation operations are defined in terms of elements of the modules 
ArrayNat, Array, Nat and Bool. 

The construction of iStack implies two mappings. A mapping mdata 
that maps the constructors of module Stack onto data representation 
operations of iStack, and a mapping mproc that maps the operations of 
module Stack onto procedure implementation operations of iStack. The 
implementation of Stack by means of ArrayNat yields the construction of 
the implementation module iStack, together with the representation 
function pT, the implementation invariant 1, the abstraction function @ 

and the equivalence function _ - _. These concepts will be thoroughly 
discussed in the next section. 

B.2 Concepts of Abstract Implementations 

In this section we take a closer look at the elements of an implementation 
of module A by module B. An implementation of module A by module B 
consists of six elements: 

1. the data representation part of the implementation module iA (see 
Section 8.2.1), 

2. the procedure implementation part of the implementation module .LA 
(see Section 8.2.2), 

3. a representation function pT (see Section 8.2.3), 

4. an implementation invariant I (see Section 8.2.4), 

5. an abstraction function @ (see Section 8.2.5) and 

6. an equivalence function _ - _ (see Section 8.2.6). 

Constraints 

At this stage, error handling and parameterization are not taken into 
account. They will be treated in Sections 8.4 and 8.5. 
In the sequel, modules A and B will meet the following constraints: 
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• The modules A and B belong to a hierarchical specification that meets 
the hierarchical constraints (see Section 3.2). This constraint excludes 
pathological cases due to junk and confusion. 

• The hierarchical specification to which modules A and B belong is 
semi-constructive (see Section 4.7). This constraint is quite natural 
since we deal with implementation and rapid proto typing aspects of 
algebraic specifications. 

• Module A defines just one sort. called sort A. Module B defines a sort 
B. The situation where module A does not define a new sort. can be 
considered as a special case. see Section 8.2.7. The constraint of defining 
at most one sort in a module simplifies the definitions related to 
abstract implementations to a great extent. This constraint is not very 
limiting in practice. The treatment of abstract implementations can be 
rephrased in terms of modules defining more than one sort. Such a 
treatment is not included in the book. 

Convention: The operation _ = _ denotes the equality function defined by 
the axioms. So. we have 

if and only if 

Xl = X2 == true: 

A -Constructors and A-Qperations 

Before discussing the concepts of abstract implementations. we first 
introduce the definitions of A-constructor and A-operation. 

Si is an A-constructor if 

• si is a constructor and 

• Si is defined in module A. 

The fact that an A-constructor always is of sort A follows from the 
constraint that A is the only sort defined in module A and from the 
(semi-)constructiveness constraints. 

Si is an A-operation if 

• Si is an operation. 
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• Sj is defined in module A and 

• the sort of the range of Sj is A or Sj has at least one argument of sort A. 

B.2.1 Data Representation Part of !A 

A first element of an implementation of module A by module B is the data 
representation part. The data representation part of the implementation 
module !A consists of a number of operations of sort B, called data 
representation operations, implementing the A-constructors (data part) of 
module A. The introduction of a data representation part implies a 
mapping mdata from A-constructors onto data representation operations in 
!A, such that the rank of each A-constructor is preserved as follows: 

• for each nullary A-constructor Sl in A. declared as Sj: -> A, we have in 
!A: 

~ta( Sj ): -> B; 

• for each nonnullary A-constructor Sj in A, declared as Sj: Sil * SI2 
Sik -> A, we have in !A: 

mdata ( Sj ): r( Sjl ) * r( Sj2 ) * ... * r( Sik ) - > B; 

with r( Sh ) = B if Sh = A, and r( Sh ) = Sh otherwise. 

* 

Usually, the mapping ~ta is implicit by an appropriate choice of the 
names of the data representation operations. If the mapping mdata is 
bijective (and mostly it is), every data representation operation will be 
named after the corresponding A-constructor preceded by the symbol !. 

Example 

Consider the implementation of module Stack by module ArrayNat as 
described in Fig. 8/4. The Stack-constructors are newstack and push. The 
data representation part of !Stack consists of the data representation 
operations !newstack and !push. 

operations 
!newstack: -> ArrayNat; 
!push: ArrayNat· Item -> ArrayNat; 

declare an: ArrayNat; it: Item; 
operation axioms 

!newstack - (empty, 0); 
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!push( an, it) == ( arrayOf an [ it / natOf an ], natOf an + 1 ); 

Fig. 8/7 

The mapping mdata = { (newstack, !newstack), (push, !push) } is 
implicit, due to the appropriate name choice. 

8.2.2 Procedure Implementation Part of!A 

A second element of an implementation of module A by module B is the 
procedure implementation part. The procedure implementation part of the 
implementation module !A consists of a number of operations, called 
procedure implementation operations, implementing the A-operations 
(procedure part) of module A. The introduction of a procedure 
implementation part implies a mapping m proc from A-operations onto 
procedure implementation operations in !A such that the rank for each A
operation is preserved as follows: 

• For each A-operation Sj, declared as Sj: Sil * Si2 * ... * Sjk -> Sj' we have 
in !A: 

m proc( Sj ): r( Sjl ) * r( Sj2 ) * ... * r( Sik ) -> r( Sj ); 

with r( Sh ) = B if Sh = A, and r( Sh ) = Sh otherwise. 

As with mdata' the mapping m proc will usually be implicit, due to an 
appropriate name choice. As with mdata' the symbol! will be used for this 
purpose. 

Example 

Consider the implementation of module Stack by module ArrayNat as 
described in Fig. 8/4. The Stack-operations are pop, top, replace and 
isnewstack. The procedure implementation part of Stack consists of the 
procedure implementation operations !pop, !top, !replace and !isnewstack. 

operations 
!pop: ArrayNat -> ArrayNat; 
hop: ArrayNat -> Item; 
!rep1ace: ArrayNat * Item -> ArrayNat; 
!isnewstack: ArrayNat -> Bo01; 

declare an: ArrayNat; it: Item; 
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operation axioms 
!pop( an) = 

if natOf an = 0 
then an 
else ( arrayOf an, natOf an - 1 ) 

end if; 
!top( an) == 
if natOf an = 0 

then errltem 
else read( arrayOf an, natOf an - 1 ) 

end if; 
!replace( an, it ) == 
if natOf an = 0 

then an 
else ( arrayOf an [ it / natOf an - 1 ], natOf an ) 

end if; 
!isnewstack( an ) == natOf an = 0; 

FIg. 8/8 

Chap. 8 

The mapping mproc = { (pop, l.pop). (top. l.top), Cisnewstack. 
l.isnewstack), (replace. l.replace) }. 

Implementation Operations 

In the sequel. both data representation operations and procedure 
implementation operations will be called implementation operations. In our 
example, the implementation operations of the implementation module 
l.Stack are l.newstack. l.push. l.pop, hop. l.replace and l.isnewstack. 

8.2.3 Representation Function 

A third element of an implementation of module A by module B is the 
representation function. Roughly speaking. the representation function 
maps from abstract onto concrete. An important remark to start with is 
that the representation function is a function from a subset of variable
free terms to variable-free terms and not from objects to objects. The 
reason for this is simple. In general. an abstract object may have more 
than one concrete object as its representation. The representation function 
will be denoted pT, where the superscript T indicates that the function is 
defined on terms and not on objects. The domain of pT is a subset of 
variable-free terms. called A-terms. 
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A-Terms 

Before discussing the concept of representation function. we first introduce 
the definition of A-term. Given an implementation of module A by 
module B. A term SiC tl. tz • ...• tn ) is an A-term (with n ~ 0) if 

• SiC tl. tz . .... tn ) is a variable-free term. 

• Si is either an A-constructor or an A-operation and 

• for each tj (1 ~ j ~ n): tj is of sort A implies that tj is an A-term. 

Conventions: 

• The set of variable-free terms is denoted T. 

• The set of variable-free terms of sort A is denoted TA. 

• The set of A-terms is denoted TA. 

• The set of A-terms of sort A is denoted T!. 

The definition of A-term is such that. in particular. the following three 
classes of variable-free terms are excluded: 

• SiC tl' tz . .... tn ) is a variable-free term and Si is not defined in A. 

• SiC tl' tz . ...• tn ) is a variable-free term. Si is an operation defined in A. 
Si is not of sort A and for each ti (1 ~ i ~ n) ti is not of sort A. 

• SiC tl' tz . .... tn ) is a variable-free term. Si is an operation or a 
constructor defined in A and there exists at least one ti (1 ~ i ~ n) of 
sort A such that ti is not an A-term. 

Example 

Consider the module Stack in Fig. 8/3. Examples of Stack-terms are: 

newstack 
pope push( newstack. 0 ) ) 
pope pope push( push( newstack. 1 ).2) ) ) 

Representation Function 

The representation function pT of an implementation of module A by 
module B is a mapping 
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pT: TA -> T; 

where TA represents the set of A-terms and T represents the set of 
variable-free terms. Given an arbitrary A-term SiC Xl. X2 ••••• Xk ). the 
representation function pT is defined as 

pTe SiC Xl. X2 ••••• Xn ) ) == m'( Si ) ( m( Xl ). m( X2 ) ••••• m( Xk ) ); 

with 
m'( si ) = mdata( Si ) if Si is an A-constructor 
m'( Si ) = m proc( Si ) if Si is an A-operation 
m( Xh ) = pTe Xh ) if Xh is an A-term of sort A 
m( Xh ) = Xh otherwise 

If a is an A-term of sort A. b is a variable-free term of sort Band pT(a) 
= b. the object denoted by b is said to be a representation of the object 
denoted by a. We also say that the term b is a representation of the term 
a. 

Example 

The representation function of the implementation of module Stack by 
module ArrayNat (see Fig. 8/3.8/4 and 8/5) is given in Fig. 8/9. 

operation 
pT: T Stack _> T; -- TStack is the set of Stack-terms 

declare 
st: T~:~~; -- T~~~ is the set of Stack-terms of sort Stack 
it: Tltem; -- Tltem is the set of variable-free terms of sort Item 

operation axioms 
pT ( news tack ) == !new5tack; 
pTe push( st. it) ) = !push( pTe st). it); 
pTe pop( st) ) == !pop( pTe st) ); 
pTe top( 8t) ) = hop( pTe st) ); 
pTe replace( st. it) ) == !replace( pTe st). it); 
pTe isnewstack( st) ) == !isnewstack( pTe 5t) ); 

Fig. 8/9 

As an example. 

8.pT( pope push( newstack. 10) ) ) = !pop( !push( !newstack. 10) ) 

where 8 stands for the denotation function defined in Chapter 2. When we 
apply the operation axioms for !pop. !push and !newstack (as defined in 
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Fig. 8/7 and 8/8). we obtain the theorem 

8.pT( pope push( newstack. 10) ) ) == ( empty [ 10/0 ], 0 ); 

The following variable-free terms of sort Stack define the same 
(abstract) object: 

newstack 
pope push( newstack. 10) ) 
pope pope push( push( newstack. 10).20) ) ) 

The representation function pT applied to these terms yields variable-free 
terms of sort ArrayNat. They are respectively: 

(empty. 0) 
( empty [ 10 / 0], 0 ) 
( empty [ 10 / 0] [ 20 / 1 ]. 0 ) 

These last three terms denote distinct objects of sort ArrayNat. 

Remarks 

• Notice the difference between the declaration 

s: Stack; 

in Fig. 8/3 and the declaration 

st. TStack. 
• Stack' 

in Fig. 8/9. The variable s ranges over Stack objects. whereas st ranges 
over Stack terms. Also. the term pope push( newstack. 10 ) ) in Fig. 
8/3 denotes a Stack object. whereas the same term in Fig. 8/9 denotes 
the variable-free term pope push( newstack. 10 ) ) itself. Therefore. 
the following theorem is not valid: 

pTe pope push( newstack. 10 ) ) == pTe newstack ); 

• Consider the abstract implementation of module Stack by module 
ArrayNat. The reader may notice that due to the definition of A-term 
the following relation exists: 

8.pT( tope push( newstack. it ) ) ) = ~top( ~push( ~newstack. it ) ) 

for any variable-free term it of sort Nat. This relation holds even if 
the variable-free term it is. e.g .• 

tope push( push( newstack. 10 ). 10 ) ) 
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• Consider a specification containing modules A and C. as shown in Fig. 
8/10. An implementation of module A by a module B is provided. 

module A; 

sort A; 
constructors 

operations 
f: A -> D; 
h: E -> A; 

end module A; 

module C; 

operation 
g: E-> A; 

end module C; 

Fig. 8110 

Following the definition of A-term. e is a variable-free term of sort 
E implies that f( h( e ) ) is an A-term. but does not imply that f(g(e)) 
is an A-term. This means that pTe f( g( e ) ) ) is not defined. This is 
quite natural since. although the sort of g( e ) is A. no procedure 
implementation operation J.g is provided. 

8.2.4 I mplementa:tion Invariant 

A fourth element of an implementation of module A by module B is the 
implementation invariant. The implementation invariant is a boolean 
function I: B -> BooL As we will see later (see property 9 in Section 8.6). 
an implementation invariant I expresses necessary conditions that must be 
met by any object of sort B for being a representation of some object of 
sort A. I is often the conjunction of a number of invariants 11 and 12 ... 
and ... Iq with Ii: B -> BooL The subset of B consisting of only those 
objects meeting the implementation invariant of an implementation. is 
called the domain of the implementation. denoted Dom. We have the 
following relation: 

VbE B: b E Dom <:> I( b) = true; 
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Example 

Consider the implementation of module Stack by module ArrayNat as 
described in Fig. 8/4. An implementation invariant is 

declare an: ArrayNat; 

I(an)== 
VnE Nat: if n ~ natOf an then true else not isundefined( arrayOf an, n) end if; 

Fig. 8111 

The explicit universal quantifier of the variable n can be eliminated using 
the auxiliary function alldefined: 

operation 
I: ArrayNat -> Boo1; 

declare an: ArrayNat; 
operation axiom 

I( an ) == alldefined( arrayOf an, natOf an ); 

Fig. 8112 

with alldefined specified below 

operation 
alldefined: Array • Nat - > Boo1; 

declare a: Array; n: Nat; 
operation axiom 

alldefined( a, n ) = 
if n=O 

then true 
else 

if isundefined( a, n - 1 ) 
then false 
else alldefined( a, n - 1 ) 

end if 
end if; 

Fig. 8113 
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The domain of an implementation is called minimal if each object of the 
domain is a representation of some object of sort A: 

Dom is minimal <> Vb E Dom, :3 a E T~: b = 8.pT( a ); 

The domain defined by the implementation invariant I given above is 
not minimal because the object denoted by 

( empty [ 10 / 0 ][ 20 / 2 ], 1 ) 

is not a representation of an object of sort Stack. The following 
implementation invariant t defines a minimal domain: 

operations 
r': ArrayNat -> Bool; 
allpreviousdefined: Array • Array - > Bool; 

-- the recursive auxiliary operation allpreviousdefined yields 
-- true if the following relation holds: 
-- if a value has been assigned to index n in the first array 
-- then a value must have been assigned to each index that is 
-- smaller than n in the second array 

declare an: ArrayNat; a, a1> a2: Array; n: Nat; it: Item; 
operation axioms 

1'( an ) = alldefined( arrayOf an, natOf an ) and 
allpreviousdefined( arrayOf an, arrayOf an ); 

allpreviousdefined( empty, a) == true; 
allpreviousdefined( al [ it In], a2 ) = 

alldefined( a2, n ) and allpreviousdefined( a1> a2 ); 

Fig. 8114 

Remarks 

In general, several choices of a domain are possible. The minimal domain is 
not always the best choice. In the subsequent sections we will use the 
domain defined by I and not the minimal domain defined by I'. Clearly, 
the smaller the domain, the smaller the proofs will be that concern the 
implementation constraints 4 and 5 in Section 8.3. On the other hand, a 
non-minimal domain may be easier to be defined or a non-minimal domain 
may make it easier to prove that all implementation operations are closed 
(see implementation constraint 1 in Section 8.3). Also, when a multi-step 
implementation is built, as explained in Section 8.2.7, taking a minimal 
domain in the first steps, may unnecessarily limit the choice of procedure 
implementation operations in later steps. 
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8.2.5 Abstraction Function 

A fifth element of an implementation of module A by module B is the 
abstraction function. An abstraction function @: B -> A is a mapping 
from sort B onto sort A. As we will see in Section 8.3 (implementation 
constraint 2), any object of sort B being a representation of an object of 
sort A is mapped by @ onto the latter. Given the domain Dom of the 
implementation, two abstraction functions @1: B -> A and @2: B -> A 
will be considered equal if each object of sort B belonging to Dom is 
mapped onto the same object of A. Although the abstraction function is 
only relevant for objects of Dom, we prefer to define it as a total function 
over B instead of working with partial functions. 

Example 

The abstraction function @ for the implementation of module Stack by 
module ArrayNat (see Fig. 8/4) is: 

operation 
@: ArrayNat -> Stack; 

declare a: Array; n: Nat; 
operation axiom 

@((a,n))= 
if n=O 

then news tack 
else push( @( ( a, n - 1 ) ), read( a, n - 1 ) ) 

end if; 

Fig. 8115 

Abstraction Function and Terms 

Notice that an abstraction function is different in nature from a 
representation function. An abstraction function @ is a mapping from 
objects (of sort B) onto objects (of sort A), whereas the representation 
function is a mapping from variable-free terms (A-terms) onto variable
free terms. 

Because the representation function pT is only defined on terms, we also 
introduce an abstraction function @T: TB -> TA, defined on terms. 
Clearly, @T and @ are closely related. From the function @ and the 
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definitions of the operations of sort B, the function @T can be derived 
systematically. 

Example 

Consider the implementation of module Stack by module ArrayNat. The 
abstraction function @T is shown in Fig. 8/16. 

operations 
@T: TArraYNat -> TStack; 
IiNat: TNat -> Nat; 

-- This hidden operation IiNat is actually the denotation function Ii 
-- of Chapter 2 restricted to terms of sort Nat and used in prefix notation. 

declare a: TArray ; n: TNat; an: TArrayNat; it: Tltem; 

operation axioms 
IiNat( 0) = 0; 
IiN,t( n + 1 ) == IiN,t( n ) + 1; 
IiN,t( n - 1 ) == IiN,t( n ) - 1; 
IiNat( natOf ( a, n ) ) == IiN,t( n ); 
IiNat( natOf !newstack ) = IiNal( natOf ( empty, 0 ) ); 
IiNat( natOf !push( an, it) ) == 

IiNat( natOf ( arrayOf an [ it / natOf an 1, natOf an + 1 ) ); 
IiN,t( natOf !pop( an ) ) == 

if IiN,t( natOf an ) = 0 
then IiN,t( natOf an) 
else IiNat( natOf ( arrayOf an, natOf an - 1 ) ) 

end if; 
IiNat( natOf heplace( an, it) ) == 

if IiNat( natOf an ) = 0 
then IiN,t( natOf an) 
else IiN,t( natOf ( arrayOf an [ it / natOf an - 1 1, natOf an) ) 

end if; 
••• -- operation axioms must be given for every operation of sort Nat 
@T« a, n) ) == 

if IiNatC n ) = 0 
then news tack 
else push( @T( ( a, n - 1 ) ), read( a, n - 1 ) ) 

end if; 
@T( !newstack) == @T( ( empty, 0) ); 
@T( !push( an, it) ) == @T( ( arrayOf an [ it / natOf an 1. natOf an +1 ) ); 
@T( !pop( an) ) == 

if IiN,t( natOf an ) = 0 
then@T( an) 
else @T( ( arrayOf an, natOf an - 1 ) ) 

end if; 
@T( heplace( an, it) ) == 

if IiNat( natOf an ) = 0 
then@T(an) 
else @T( ( array Of an [ it / natOf an - 1 l. natOf an) ) 
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end if; 

Fig. 8116 

The use of the hidden operation SNat is necessary to define @T with a finite 
number of axioms. 

Remarks 

• The following remark is analogous to the first remark given for the 
representation function. The expression empty in Fig. 8/6 denotes an 
Array object. whereas empty in Fig. 8/16 denotes the variable-free term 
empty itself . 

• In general. the relation between @ and @T is expressed as follows: 

S.S.@T( b ) = S.@( b ) 

where b stands for any variable free term of sort B. The function S 
stands for the denotation function as defined in Chapter 2. Association 
is from right to left. As an illustration. we have 

S.S.@T( lnewstack ) = S.newstack = 
S.@( lnewstack ) = ( S.@ ) (S. lnewstack ) 

This property is illustrated in Fig. 8/17. 
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@( lnewstack) ~ 

@T( lnewstack) [) ~ 

-----------... newstack [) ~ 

@ 

l newstack --------~ 

Fig. 8/17 

Convention: From now on. we will omit the symbol 8. as it is common 
practice not to write the denotation function explicitly. For instance. 

theorem 
8.@T( b ) == 8.@T( b' ); 

where band b' stand for terms of sort B. will be written as 

theorem 
@T( b ) = @T( b' ); 

which is by definition of @T equivalent to 

theorem 
@( b ) = @( b' ); 

8.2.6 Equivalence Relation 

A sixth and last element of an implementation of module A by module B is 
the equivalence relation _ - _. As we will see in Section 8.3 
(implementation constraint 3). two objects. b l and bz. of sort B being 
representations of objects of sort A. are equivalent if they are 
representations of the same object of sort A. The equivalence function _
_: B * B -> Boo1 is a binary boolean function indicating whether its 
arguments are equivalent. We have: 



www.manaraa.com

Sec. 8.2 Concepts of Abstract Implementations 269 

b1 - b2 : 

if and only if 

b1 - b2 == true: 

Naturally. the equivalence function must be reflexive. symmetric and 
transitive: 

operation 
_~_:B*B-> Bo01; 

declare b. bb b2• b3 : B; 
theorems 

b ~ b == true; 
bl ~ b2 = b2 ~ bl ; 
bl ~ b2 and b2 ~ ~ ~ bl ~ b3 == true; 

Fig. 8118 

Given the domain Dom of the implementation. two equivalence 
functions _ -1 _: B * B -> Bool and _ -2 _: B * B -> Bool will be 
considered equal if and only if each pair of objects of sort B belonging to 
Dom. is or is not equivalent according to both equivalence functions. 
Although the equivalence function is only relevant for objects of Dom. we 
prefer to define it as a total function over B instead of working with 
partial functions. 

Example 

An equivalence function for the implementation of module Stack by 
module ArrayNat (see Fig. 8/4) is: 

operation 
_- _: ArrayNat * ArrayNat -> Bo01; 

declare al. a2: Array; nb n2: Nat; 
operation axiom 

( at> nl ) ~ ( a2. n2 ) = 
(nl = n2) and 
( VkE Nat: if k < nl then read( al. k) = read( a2. k) else true end if ); 

Fig. 8119 



www.manaraa.com

270 Abstract Implementations Chap. 8 

The explicit universal quantifier of the variable k can be eliminated by 
defining the equivalence function recursively. 

operation axiom 
( alo nl ) ~ ( a2, n2 ) == 
if nl = n2 

then 
if nl = 0 

then true 
else ( read( at. nl - 1 ) = read( a2, nl - 1 ) ) and ( ( at. nl - 1 ) N ( a2, n2 - 1 ) ) 

end if 
else false 

end if; 

Fig. 8120 

8.2.7 A Multi-Step Implementation Method 

The implementation of module A by module B as described in the 
preceding sections, can be developed in two steps. 

In a first step, the abstract implementation is constructed from A by 
considering only the constructors defined in A. In this way, we obtain an 
implementation module called lAdata , which is the data representation part 
of lA (the procedure implementation part is empty). We also obtain a 
representation function pT, an implementation invariant 1. an abstraction 
function @ and an equivalence function _ - _. 

A benefit from this step by step development of the abstract 
implementation is that the implementation process for module A can be 
halted temporarily at this point. Rapid proto typing will then combine the 
data representation operations defined in lAdata with the operations of 
module A. Roughly speaking, in such a configuration, only the data part 
(constructors) of A is implemented, not the procedure part (operations) of 
A. The data representation, obtained by this step, can be treated by rapid 
proto typing. before the procedure implementation is considered. 

In a second step, the procedure implementation operations are written, 
yielding the module lAproc. This module is constructed by considering 
constructors as well as operations defined in A. Rapid prototyping at this 
stage of development uses the module lAdata as well as lAproc-

In generaL more steps are possible. Assume that later in the life cycle 
of the software system, new operations have to be added to module A or to 
a new module A'. These operations can be implemented in a new module. 
say A~roc' Rapid prototyping will then use the implementation modules 
lAdata , !Aproc and lA~roc. 
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As an illustration. consider the implementation of Stack by ArrayNat. 
In a first step. the module tStackdata (data representation part) is 
constructed by only considering the constructors defined in Stack. Later. 
for efficiency reasons. an implementation operation may be necessary for 
the operation pop. yielding the module tStackproc • This (partial) procedure 
implementation part can later be extended with other modules containing 
other procedure implementation operations. 

B.3 hnplementation Constraints 

This section concerns correctness aspects of abstract implementations. An 
abstract implementation must meet three classes of constraints: 

• A first class contains more general constraints as defined in Chapters 3 
and 4. The implementation operations. the implementation invariant. 
the abstraction function and the equivalence function must not violate 
the (semi-)constructivity and the hierarchical constraints. Thus. they 
have to be unique. complete. terminating. consistent •... 

• A second class consists of constraints that are related to definitions of 
concepts. given in the previous sections. An example of such a 
constraint is that equivalence relations must be reflexive. symmetric 
and transitive. Also. the mappings mdata and mproc must preserve the 
ranks of constructors and operations. 

• A third class consists of the implementation constraints. 
Implementation constraints guarantee that an implementation meets its 
specification. 
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Before we attack the problem of implementation constraints. the 
following remark is in place here. It is true that in principle algebraic 
specifications allow the designer to use rigorous (mathematical) reasoning. 
Clearly. it would be very nice if we could prove that the abstract 
implementation meets all the constraints mentioned above. This would 
indeed lead to the development of software of high quality what 
correctness is concerned Of we make abstraction from the potential errors 
within the proofs). In practice. however. the situation is far from ideal. 
Proving that an implementation meets its specification seems to be a 
tremendous work even for relative small examples. if we do not have 
powerful theorem provers to our disposal. Unfortunately. such tools are 
yet beyond today's proving technology. A realistic attitude would be to 
concentrate on (partial) proofs of the most important constraints of the 
abstract implementation. In spite of the far from ideal situation 
concerning correctness proofs. a rigorous formulation of the 
implementation constraints is of most importance for (formal or informal) 
reasoning about the correctness of the implementation. In this section. no 
complete proofs for the examples are given. They can be found in 
[Monteyne88 l. 

In Fig. 8/21 a graphical representation of the concepts of the abstract 
implementation of Stack by ArrayNat is shown. The domain is the non
shaded part of ArrayNat. The equivalence relation is defined by indicating 
the equivalence classes in ArrayNat by a dotted line. The representation 
function pT: TStack -> T is represented by a thin arrow. The abstraction 
function @: ArrayNat -> Stack is represented by a thick arrow. Notice 
that the object denoted by push( newstack. it ) has several distinct objects 
of ArrayNat as representation. This is the reason why pT is defined on 
Stack-terms and not on objects. 

The implementation constraints that must be met by an implementation 
to be correct are: 

1. The implementation operations of sort B must be closed with respect 
to the implementation invariant I. This is further explained. Let Si 

be an A-constructor or an A-operation of sort A whose jr .... and j~h 
arguments are its only arguments of sort A. As the rank must be 
preserved. the j{h. ... and j~h arguments and the range of the 
implementation operation lSi are of sort B. The result of the 
implementation operation lSi must meet the implementation invariant 
I (Le. the implementation invariant applied to the result yields true) 
if the jr .... and j~h arguments meet the implementation invariant: 

I( bj1 ) and ... and I( bjn ) => I( lSi( ...• bj1 ••••• bjn •••• )) == true; 
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Example 

declare an: ArrayNat; it: Item; 
theorem 

I( an ) ~ I( !push( an, it) ) = true; 

Fig. 8122 

Chap. 8 

2. The object denoted by an A-term of sort A must be the same as the 
object denoted by the term obtained by consecutively applying the 
representation and the abstraction function to the given term: 

@T(pT(a))=a: 

Convention: If we write 
t1 == t2 == t3 == ... == tn 

we mean 
t1 == t2: t2 == t3: ... t n-1 = tn: 

If we write 
b => t1 == t2 == t3 == ... == tn 

with b a boolean expression. we mean 
b => t1 = t2: b => t2 == t3: ... b => t n-1 == tn: 

The same notational conventions may be used for the equivalence 
relation - or even for a combination of == and -. 

Example 

declare it: TItem; 

theorems 
@T( pTe pope push( newstack, it) ) ) ) == 

@T( !pop( !push( !newstack, it) ) ) = 
@T( !poP( !push( ( empty, 0), it) ) ) == 

@T( !poP( ( empty [ it / 0 ], 1 )) ) = 
@T( (empty [ it /0],0)) == 

news tack == 

pop( push( news tack, it ) ) 

Fig. 8123 
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3. If two A-terms of sort A denote the same object. then their 
representations must denote equivalent objects of sort B: 

al = a2 ~ pTe al ) - pTe a2 ); 

Example 

declare it: Tltem; 

theorems 
pop( push( news tack. it ) ) = news tack ~ 

pIC pope push( newstack. it) ) ) == !poP( !push( !newstack. it) ) == 
( empty [ it / 0 ]. 0) _ ( empty. 0) == pIC newstack) 

Fig. 8/24 

4. If two terms of sort B denote equivalent objects of the domain Dom. 
then their abstractions must denote the same object of sort A: 

I( b1 ) and I( b2 ) and (b1 - b2) ~ @( b1 ) == @( b2 ): 

Example 

declare itt. it2: Item; 
theorems 

ICC empty [ itt / 0 ][ it2 / 1 ], 1 ) ) and I( ( empty [ itt / 0 ]. 1 ) ) and 
( empty [ itt / 0 ][ it2 / 1 ]. 1 ) N ( empty [ itt / 0 ]. 1 ) ~ 

@( ( empty [ itt / 0 ] [ it2 / 1 ], 1 ) ) == 
push( news tack, itt) == 
@( ( empty [itt / 0 ], 1 ) ) 

Fig. 8/25 

5. If a term of sort B denotes an object belonging to the domain Dom. 
then this object must be equivalent to the object denoted by the term 
obtained by consecutively applying the abstraction and the 
representation function to the given term: 

I( b ) ~ pTe @T( b) ) - b; 
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Example 

declare it!, it2: Tltem; 
theorems 

1« empty [ it! / 0 ][ it2 /1 1, 1 ) ) ~ 
pTe @T( (empty [ it! /0][ it2 /1 1, 1 ) ) == 

pTe push( newstack, read( empty [ it! / 0 1 [ it2 / 1 1, 1 - 1 ) ) ) = 
!push( !newstack, read( empty [ it! / 0 1 [ it2 / 1 1, 1 - 1 ) ) == 

!push( !newstack, it! ) == 

( empty [ it! /0 1, 1 ) - ( empty [ it! /0 ][ it2 / 1 1, 1 ) 

Fig. 8126 

Chap. 8 

6. An A-term x not of sort A must denote the same object as the term 
obtained by applying the representation function to the given term: 

x == pTe x); 

Example 

declare it: T ltem; 
theorems 

isnewstack( push( news tack, it ) ) == 

false = 

!isnewstack( ( empty [ it / 0 1, 1 ) ) == 

!isnewstack( !push( (empty, 0), it)) = 

!isnewstack( !push( !newstack, it)) = 

pTe isnewstack( push( newstack, it) ) ) 

Fig. 8/27 

7. Let Si be an A-constructor or an A-operation of sort A whose jfh, ... 
and j~h arguments are its only arguments of sort A. As the rank 
must be preserved, the jfh, ... and j~h arguments and the range of the 
implementation operation .LSi are of sort B. If bh and b;!,... and bjn 

and b;n are pairwise equivalent terms of sort B belonging to the 
domain Dom then replacing bh by b;! as jfh argument of .LSi, ... and 

bk by b~ as j~h argument of .LSi must result in an equivalent object 
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ofB: 
I( bh ) and I( b~l ) and ( bh - b~l ) and ... 

and I( bjn ) and I( b~n ) and ( bjn - b~ ) => 
~Si( .••• bh ..... bjn .... ) - ~Si( •••• b~l' ...• b~n' ... ); 

Example 

declare itt. it2. it3: Item; 
theorems 

1« empty [ itl / 0 ][ it2 /1 1. 1 ) ) and I( ( empty [ itl / 0 1. 1 ) ) and 
( empty [ itl / 0 ][ it2 /1 1. 1 ) N ( empty [ itl / 0 1. 1 ) ~ 

!replace( ( empty [ itl /0 1. 1 ). it3 ) = ( empty [ itl /01 [ it3 /01. 1 ) == 

( empty [ it3 / 0 1. 1 ) - ( empty [ it2 /1 1 [ it3 / 0 1. 1 ) == 

( empty [ itl / 0 1 [ it2 /1 1 [ it3 / 0 1. 1 ) = 
!replace( ( empty [ itl / 0 1 [ it2 /1 1. 1 ). it3 ) 

Fig. 8128 

8. Let Si be an A-operation not of sort A whose jfh • ... and j~h 
arguments are its only arguments of sort A. As the rank must be 
preserved. the jfh • ... and j~h arguments of the implementation 
operation ~Si are of sort B. whereas the range of ~Si is of the same sort 
as the range of Si' If bh and b~l' ... and bjn and b~n are pairwise 
equivalent terms of sort B belonging to the domain Dom then 
replacing bh by b~l as jfh argument of ~Si' ••• and bjn by bJn as j~h 
argument of ~Si must result in the same object: 

I( bh ) and I( b~l ) and ( bh - b~l ) and 

... and I( bk ) and I( b~n ) and ( bjn - b~n ) => 
~Si( •••• bh •.... b jn .... ) == ~Si( •••• bJl • .... b Jn .... ); 

Example 

declare itt. it2: Item; 
theorems 

I( ( empty [ itl / 0 ][ it2 /1 1. 1 ) ) and I( ( empty [ itl / 0 1. 1 ) ) and 
( empty [ itl / 0 ][ it2 /1 1. 1 ) N ( empty [ itl / 0 1. 1 ) ~ 

!isnewstack( ( empty [ itl / 0 ], 1 ) ) = false = 
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!isnewstack( ( empty [ itl / 0 ] [ it2 / 1 ], 1 ) ) 

Fig. 8129 

8.4 Example: Scheme of Stacks 

In Section 8.1 the stack was used to introduce the concepts of abstract 
implementations. There. the stack was simplified in the sense that stack 
items were restricted to natural numbers and error handling was 
introduced in a naive way. In this section the stack is further elaborated 
so that maximum use is made of parameterization. yielding a specification 
with a high degree of reusability. Parameterization is done at six different 
places in the specifications. We have the following six schemes: 
StackScheme, !.StackScheme, ArrayScheme. ItemRequirementScheme. 
AttributeRequirementScheme and IndexRequirementScheme. Another 
important aspect dealt with in this section. is the systematic use of error 
handling as described in Chapter 7. A global picture of the abstract 
implementation of Stack was shown in Fig. 8/2. 

StackScheme 

Fig. 8/30 defines stacks by means of a scheme. called StackScheme. The 
requirement of StackScheme is Item. This requirement is an instantiation 
of another scheme, ItemRequirementScheme. Recall that an instantiation 
of a requirement scheme yields a requirement (formal module). The 
introduction of requirement schemes enables the designer to localize the 
requirement information at one single place in the specification. In the case 
of ItemRequirementScheme. instantiations are used in StackScheme (see 
Fig. 8/30) and in !'StackScheme (see Fig. 8/31). 
To handle stack underflow, a new constructor errStack is introduced. 
Error handling was thoroughly discussed in Chapter 7. 

scheme ItemRequirementScheme; 
requirement Item; 

export all; 
sort Item; 
operation 

errItem: -> Item; 
end requirement Item; 

end scheme ItemRequirementScheme; 
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scheme StackScheme [instantiate ItemRequirementScheme; end instantiate; ]; 
module Stack; 

import Bool, true, false, errBool from Bool; 
Item, errItem from Item; 

export all; 
sort Stack; 
constructors 

news tack: - > Stack $$ ; 
push: $ Stack * Item - > Stack $$ ; 
errS tack: - > Stack ?? ; 

operations 
pop: Stack - > Stack; 
top: Stack -> Item; 
replace: Stack * Item -> Stack; 
isnewstack: Stack -> Bool; 

declare s: Stack; it, it1, it2 : Item; 
constructor axiom 
! s == errS tack; 

operation axioms 
$$ pop( news tack ) == errS tack; 
$$ pope push( s, it ) ) == s; 
$$ top( newstack ) == errItem; 
$$ top( push( s, it ) ) == it; 

replace( $ newstack, it ) == errStack; 
replace( $ push( s, it1 ), it2 ) == push( s, it2 ); 

$$ isnewstack( news tack ) = true; 
$$ isnewstack( push( s, it ) ) == false; 
?? pop( s ) == errS tack; 
?? top( s ) == errItem; 

replace( ! s, it ) = errStack; 
?? isnewstack( s ) == errBool; 

end module Stack; 
end scheme StackScheme; 

Fig. 8/30 

!StackScheme 

The implementation of StackScheme by means of the module ArrayNat 
yields another scheme tStackScheme, defined in Fig. 8/31. 

As for StackScheme, the requirement of tStackScheme is Item, which is 
an instantiation of the scheme ItemRequirementScheme. The main module 
of tStackScheme is tStack. This module is defined in terms of the modules 
ArrayNat, Array, Nat and Bool and in terms of the requirement Item. The 
module Array is local to the scheme tStackScheme by means of an 
instantiation of the scheme ArrayScheme (see Fig. 8/35). Also, ArrayNat 
is a module that is local to the scheme tStackScheme. 
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The main module !Stack of the scheme !StackScheme contains the 
definitions of the data representation operations and the procedure 
implementation operations of the abstract implementation. 

scheme lStackScheme [ instantiate ItemRequirementScheme; end instantiate; ]; 
instantiate ArrayScheme; 

with Index as Nat, 
Index as Nat, 

= as_=...,; 
with Attribute as Item, 

Attribute as Item, 
initial as errItem, 
errAttribute as errItem; 

end instantiate ArrayScheme; 

module ArrayNat; 
import Array, errArray from Array; 

Nat, errNat from Nat; 
export ArrayNat, ( ..J _), arrayOf ..J natOf ..J errArrayNat, safeArrayNat; 
sort ArrayNat = Array • Nat; 
operation 

errArrayNat: -> ArrayNat; 
operation axiom 

errArrayNat = (errArray, errNat); 
end module ArrayNat; 

module lStack; 
import ArrayNat, ( ..J _), arrayOf ..J natOf ..J errArrayNat, 

safeArrayNat from ArrayNat; 
Array, empty, _[ _, _], read from Array; 
Nat, zero, succ, pre, _ = ..J _ < _ from Nat 

rename zero as 0, succ as _ + 1, pre as _ - 1; 
Bool, true, false, errBool from Bool; Item, errItem from Item; 

operations 
lnewstack: -> ArrayNat; 
lpush: ArrayNat· Item -> ArrayNat; 
lerrStack: -> ArrayNat; 
lpop: ArrayNat -> ArrayNat; 
hop: ArrayNat -> Item; 
lreplace: ArrayNat· Item -> ArrayNat; 
lisnewstack: ArrayNat -> Bool; 
lsafeStack: ArrayNat -> Bool; 

declare an: ArrayNat; it: Item; 
operation axioms 

lnewstack = ( empty, 0 ); 
lpush( $ an, it) = (arrayOf an [ it' natOf an ], natOf an + 1); 

$$lpoP( an ) = 
if natOf an = 0 

then lerrStack 
else (arrayOf an, natOf an - 1 ) 

end if; 
$$ hop( an ) == 
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if natOf an = 0 
then errltem 
else read( arrayOf an, natOf an - 1 ) 

end if; 
!replace( $ an, it ) == 

if natOf an = 0 
then !errStack 

Example: Scheme of Stacks 281 

else ( arrayOf an [ it / natOf an - 1 ], natOf an ) 
end if; 

$$ lisnewstack( an) == natOf an = 0; 
!safeStack( an ) == safeArrayNat( an ); 
!errStack = errArrayNat; 
!push( I an, it) = !errStack; 

11 !pop( an) = !errStack; 
?? !top( an) = errItem; 

heplace( I an, it ) = !errStack; 
?? !isnewstack( an ) == errBool; 

end module !Stack; 
end scheme !StackScheme; 

Fig. 8/31 

The sort ArrayNat is defined as a Cartesian product (see Section 4.11). 
Recall that by default we now have at our disposal the constructor (_,_), 
the selector operations arrayOf_ and natOf_ ' and finally the update 
operations _ [ _ 1 array ] and _ [ _ 1 nat]. The update operations will 
not be used in our example. To these default constructor and operations 
we add the operation errArrayNat. Recall that the safety function for 
ArrayNat objects is as follows (see Section 7.6): 

operation 
safeArrayNat: ArrayNat -> Bool; 

declare an: ArrayNat; 
operation axiom 

safeArrayNat( an ) = safeArray( arrayOf an ) and safeNat( natOf an ); 

Fig. 8/32 

The error handling in the module ~Stack (see Fig. 8/31) is closely 
related to the one given in the scheme StackScheme (see Fig. 8/30). As an 
example, the error handling is such that push, pop and replace on an unsafe 
stack, yielding errStack, implies respectively ~push, ~pop and heplace on 
an unsafe arraynat. yielding errArrayNat. As another example, top on an 
unsafe stack, yielding errItem. implies hop on an unsafe arraynat. yielding 
errItem. 
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Notice the difference between .l.safeStack and safeArrayNat. The 
operation .l.safeStack is the procedure implementation operation of 
safeStack. The operation safeStack is defined by the scheme StackScheme 
as follows: 

operation 
safeStack: Stack -> Bool; 

declare s, Sl: Stack; it: Item; 
safeStack( s ) == 

case s of 
news tack: true; 
push( s10 it ): safeStack( sl ); 
errStack: false; 

end case; 

Fig. 8/33 

The operation safeArrayNat was given in Fig. 8/32. In the module 
.l.Stack, we have 

!safeStack( an) = safeArrayNat( an ); 

Fig. 8/34 

ArrayScheme 

ArrayScheme is defined in Fig. 8/35. It has two requirements Index and 
Attribute. These requirements are in turn instantiations of respectively 
IndexRequirementScheme and AttributeRequirementScheme. In 
.l.StackScheme. ArrayScheme is instantiated with Index being bound to 
actual parameter Nat and Attribute to actual parameter Item. Notice that 
Item is itself a formal parameter of .l.StackScheme. 

scheme A ttributeReq uiremen tScheme; 
requirement Attribute; 

export all; 
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sort Attribute; 
operation 

initial, errAttribute: -> Attribute; 
end requirement Attribute; 

end scheme AttributeRequirementScheme; 

scheme IndexReq uiremen tScheme; 
requirement Index; 

import Bool, true, _ and ~ _ = > _ from Bool; 
export all; 
sort Index; 
operation 

_ = _: Index * Index -> Bool; 
declare i, il> i2, i3: Index; 
theorems 

$i = $i == true; 
$il = $i2 = $i2 = $il; 
($il = $i2 ) and ( $i2 = $i3 ) => ( $il = $i3 ) true; 

end requirement Index; 
end scheme IndexRequirementScheme; 

scheme ArrayScheme [ 

]; 

instantiate AttributeRequirementScheme; end instantiate; 
instantiate IndexRequirementScheme; end instantiate; 

module Array; 
import Bool, true, false, errBool from Bool; 

all from Attribute, Index; 
export all; 
sort Array; 
constructors 

empty: -> Array $$; 
_[ _I _]: $ Array' Attribute * $ Index -> Array $$; 
errArray: -> Array?? ; 

operations 
read: Array' Index -> Attribute; 
isundefined: Array' Index -> Bool; 

declare ar: Array; i, il> i2: Index; at, atl, at2: Attribute; 
constructor axioms 

not ( il = i2 ) => $( ar [ atl I il ][ at2 li2 ]) = $ ( ad at2 li2 ][ atl lil ]); 
$ ( ar [ atl Ii] [ at2 Ii] ) == $ ( ar [ at2 Ii] ); 

operation axioms 
$$ isundefined( empty, i) == true; 
$$ isundefined( ar [ at I ill, i2 ) == 

if il = i2 
then false 
else isundefined( ar, i2 ) 

end if; 
$$ read( empty, i) = initial; 
$$ read( ar [ at I ill, i2 ) == 

if il = i2 
then at 
else read( ar, i2 ) 

end if; 
?? isundefined( ar, i) == errBool; 
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?? read( ar, i) = errAttribute; 
end module Array; 

end scheme ArrayScheme; 

Fig. 8/35 

Concepts of the Implementation 

Chap. 8 

In Section 8.2 we treated the concepts related to the abstract 
implementation of module A by module B yielding module !A. Notice 
that in this section each of the modules A and !A is the main module of a 
scheme and. therefore. these modules may contain formal parameters. In 
our example. we have the implementation of module Stack by means of 
module ArrayNat yielding module !Stack. Unlike the simplified stack in 
Sections 8.1 and 8.2. Stack and !Stack are now the main modules of 
respectively StackScheme and !StackScheme. The formal parameters of 
StackScheme and !StackScheme are errItem and Item. The fact that each of 
the modules A and !A is a main module of a scheme does not affect the 
concepts and definitions given in Section 8.2. 

Recall that the abstract implementation of module A by module B 
consists of six elements: 

1. the data representation part. 

2. the procedure implementation part. 

3. a representation function pT. 

4. an implementation invariant I. 

5. an abstraction function @ and 

6. an equivalence function _ -_. 

Let us return to our example of stacks. The data representation part 
and the procedure implementation part of the abstract implementation 
were given in Fig. 8/31. The representation function pT of the abstract 
implementation is given in Fig. 8/36. 

operation 
pT: TStack _> T; __ T Stack is the set of Stack-terms 

declare 
st: T~::~~; -- T~:~~ is the set of Stack-terms of sort Stack 
it: THem; -- THem is the set of variable-free terms of sort Item 



www.manaraa.com

Sec. 8.4 

operation axioms 
pT ( news tack ) == !newstack; 
pTe push( st, it) ) = !push( pTe st), it); 
pT ( errS tack ) == !errStack; 
pTe pop( st) ) = !pop( pTe st)); 
pTe top( st)) == hop( pTe st) ); 
pTe replace( st, it) ) == !replace( pTe st), it); 
pTe isnewstack( st) ) == !isnewstack( pTe st) ); 
pTe safeStack( st) ) == !safeStack( pTe st) ); 

Fig. 8136 
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Now follow a few examples, illustrating the application of the 
representation function pT. The formal parameter it stands for an 
arbitrary variable-free term of any sort that can be bound to Item. 

pTe push( pop( newstack), it) ) == 
!push( !pop( !newstack), it) = 
!push( !pop( ( empty, 0) ), it) == 
!push( !errStack, it) == 
!push( errArrayNat, it) == 
!push( ( errArray, errNat), it) == 
!errStack = 

errArrayNat == 
( errArray, errNat ) 

pTe safeStack( news tack )) = 

!safeStack( !newstack ) == 
!safeStack( ( empty, 0 ) ) == 
safeArrayNat( ( empty, 0 ) ) == 
safeArray( empty) and safeNat( 0 ) == 
true 

pTe safeStack( pop( newstack))) = 

!safeStack( !pop( !newstack ) ) == 
!safeStack( !pop( ( empty, 0 ) ) ) == 
!safeStack( !errStack) == 
!safeStack( errArrayNat ) = 

!safeStack( ( errArray, errNat ) ) == 
safeArrayNat( ( errArray, errNat) ) == 
safeArray( errArray ) and safeNat( errNat ) == 
false 

pTe tope push( newstack, it))) = 

hop( !push( !newstack, it) ) == 
hope !push( ( empty, 0), it) ) = 

hope ( empty [ it / 0 1, 1 ) = 

read( empty [ it / 0 1, 0 ) == 
1 

Fig. 8137 
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The implementation invariant I of the abstract implementation can be 
found in Fig. 8/38. 

operations 
I: ArrayNat -> Bool; 
alldefined: Array * Nat -> Bool; 

declare an: ArrayNat; a: Array; n: Nat; 
operation axioms 
$$ I( an ) = alldefined( arrayOf an, natOf an ); 
$$ alldefined( a, n ) == 

if n=O 
then true 
else 

if isundefined( a, n - 1 ) 
then false 
else alldefined( a, n - 1 ) 

end if 
end if; 

17 I( an ) = true; 
17 alldefilled( a, n ) = errBool; 

Fig. 8/38 

Notice that the domain is not minimal. 

The abstraction function @ of the abstract implementation is shown in Fig. 
8/39. 

operation 
@: ArrayNat -> Stack; 

declare a: Array; n: Nat; 
operation axiom 
$$ @( ( a, n ) ) == 

if n=O 
then news tack 
else push( @( ( a, n - 1 ) ), read( a, n - 1 ) ) 

end if; 
17 @( ( a, n ) ) == errS tack; 

Fig. 8/39 

The equivalence function _ - _ of the abstract implementation is given in 
Fig. 8/40. 



www.manaraa.com

Sec. 8.4 Example: Scheme of Stacks 287 

operation 
_ N _: ArrayNat * ArrayNat - > Bool; 

declare a1. a2: Array; nt> n2: Nat; an1. an2: ArrayNat; 
operation axiom 
$$ ( ( at> n1 ) N ( a2. n2 ) ) == 

if n1 = n2 
then 

if n1 = 0 
then true 
else ( read( at> 111 - 1 ) = read( a2. n1 - 1 ) ) and ( ( at> n1 - 1 ) N ( a2. n2 - 1 ) ) 

end if 
else false 

end if; 
( ! an1 N I an2 ) == true; 
( I an1 N $ an2 ) == false; 
( $ an1 N ! an2 ) == false; 

Fig. 8140 

8.5 Example: Scheme of Symbol Tables 

In this section the design-implementation structure of the abstract 
implementation of the symbol table by using a hash coding technique is 
worked out. This structure was shown in Fig. 8/1. Now follow the 
specification details of the abstract implementation of the symbol table. 
Recall that most of the modules in Fig. 8/1 are instantiations of schemes. 
This is the case for the modules Symboltable, !Symboltable. Stack. !Stack. 
Mapping. !Mapping. Array. BoundedArray and List. We also use 
requirement schemes. This high degree of parameterization makes the 
abstract implementation reusable up to a great extent. A few schemes used 
in the abstract implementation of the symbol table have been defined 
elsewhere in the book. This is the case with ListScheme (defined in Fig. 
4/6). StackScheme (defined in Fig. 8/30). !StackScheme (defined in Fig. 
8/31). BoundedArrayScheme (defined in Fig. 7/20). 
AttributeRequirementScheme (defined in Fig. 8/35). Another aspect. 
which makes this example interesting. is that error handling and error 
recovery are systematically included in the modules. requirements and 
schemes involved in the abstract implementation. 
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SymboltableScheme 

The operations defined on symbol tables are init, enterblock, addid, 
leaveblock, isinblock and retrieve. Their meaning is as defined in 
[Guttag77], except for the error handling. The symbol table is a data 
structure designed for a compiler for a block-structured language. An 
informal specification may be as follows [Guttag77]. The operation init 
allocates and initializes the symbol table for the outermost scope. The 
operation enterblock prepares a new local naming scope. An identifier and 
its attribute are added to the symbol table by the operation addid. The 
operation leaveblock discards entries from the most current scope and 
reestablishes the next outer scope. The operation isinblock checks whether 
an identifier has already been declared in the current scope. Finally, the 
operation retrieve returns the attribute associated with the most local 
definition of a given identifier. Error handling is provided. As soon as an 
unsafe identifier is added to a naming scope of the symbol table, that scope 
and the more outer scopes become inaccessible for retrieval as long as the 
entries from that naming scope have not been discarded. A formal 
specification is given in Fig. 8/4l. 

The last theorem of the requirement Identifier (instantiation of 
IdentificationRequirementScheme) seems a bit peculiar. Following the 
equality operation for boolean values as defined in Fig. 7124, this theorem 
simply requires that the equality operation defined on identifiers must 
either yield true or false. This property has been used in the formulation 
of the third constructor axiom of module Symboltable. 

The first constructor axiom of module Symboltable indicates that if 
two equal identifiers have been added in the same block (scope) of the 
symbol table, only the most recent addition is relevant. The second 
constructor axiom states that an identifier may be replaced by an equal 
identifier. The third constructor axiom expresses that the order of addition 
in a block of the symbol table is irrelevant for identifiers that are not 
equal. Because the constructor axioms consider safe as well as unsafe 
identifiers, implementation by means of hash coding (that does not 
preserve the order of addition) is enabled. 

Remember that the safety function for Identifier is imported by the 
module Symboltable by default, see Section 7.6 (Shorthand Notation and 
Import Clauses). 

scheme IdentificationRequirementScheme; 

requirement Identification; 
import Bool, true, false, errBool, _ and ...J _ = _ from Bool; 
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export all; 
sort Identification; 
operations 

errIdentification:':> Identification; 
_ = _: Identification * Identification -> Bool; 

declare id, id1 , id2, id3: Identification; 
theorems 

(jd = id) == true; -- reflexivity 
(id1 = id2) == (jd2 = id1); -- symmetry 
(jd1 = id2) and (jd2 = id3 ) :;> (jd1 = id3) = true; -- transitivity 
(jd1 = id2) = errBool = false; 

-- the required equality operation yields either true or false 
end requirement Identification; 

end scheme IdentificationRequirementScheme; 

scheme SymboltableScheme [ 

]; 

instantiate IdentificationRequirementScheme 
rename Identification as Identifier, 

errIdentification as errIdentifier; 
end instantiate IdentificationRequirementScheme; 

instantiate AttributeRequirementScheme; -- see Fig. 8/35 
end instantiate AttributeRequirementScheme; 

module Symboltable; 
import Identifier, _ = _from Identifier; 

Attribute, initial, errAttribute from Attribute; 
Bool, true, false, errBool from Bool; 

export all; 
constructors 

init: -> Symboltable $$; 
enterblock: Symboltable -> Symboltable $$; 
addid: $ Symboltable * $ Identifier * Attribute -> Symboltable $$; 

operations 
leaveblock: Symboltable -> Symboltable; 
isinblock: Symboltable * Identifier -> Bool; 
retrieve: Symboltable * Identifier -> Attribute; 

declare symbtab: Symboltable; id, id1, id2: Identifier; attr, attrl, attr2: Attribute; 
constructor axioms 

id1 = id2 :;> 

addid( addid( symbtab, id1, attrl ), id2, attr2 ) = 

addid( symbtab, id2, attr2 ); 
id1 = id2 :;> 

addid( symbtab, idt. attr ) = addid( symbtab, id2, attr ); 
not ( id1 = id2 ) :;> 

addid( addid( symbtab, id1, attrl ), id2, attr2 ) = 
addid( addid( symbtab, id2, attr2 ), id1, attrl ); 

operation axioms 
leaveblock( init ) == init; 
leaveblock( enterblock( symbtab ) ) = symbtab; 
leaveblock( addid( symbtab, id, attr ) ) = leaveblock( symbtab ); 

$$ isinblock( in it, id) == false; 
$$ isinblock( enterblock( symbtab ), id) = false; 
$$ isinblock( addid( symbtab, idt. attr ), id2 ) = 
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if id1 = id2 
then true 
else isinblock( symbtab, id2 ) 

end if; 
$$ retrieve( init, id ) == initial; 
$$ retrieve( enterblock( symbtab ), id ) == retrieve( symbtab, id ); 
$$ retrieve( addid( symbtab, idt. attr ), id2 ) == 

if id1 = id2 
then attr 
else retrieve( symbtab, id2 ) 

end if; 
11 isinblock( symbtab, id) == errBool; 
11 retrieve( symbtab, id) = errAttribute; 

end module Symboltable; 
end scheme SymboltableScheme; 

Fig. 8/41 

!SymboltableScheme 

Chap. 8 

~Symbo1tableScheme defines the abstract implementation of symbol tables 
in terms of stacks of mappings from identifiers to attributes. Mapping is 
instantiated from MappingScheme, which will be discussed later, and Stack 
is instantiated from StackScheme, which was defined in Fig. 8/30. The 
implementation of stacks in terms of arrays and natural numbers was 
discussed in Section 8.4. 

scheme !SymboltableScheme [ 

]; 

instantiate IdentificationRequirementScheme 
rename Identification as Identifier, 

errIdentification as errIdentifier; 
end instantiate IdentificationRequirementScheme; 

instantiate AttributeRequirementScheme; -- see Fig. 8/35 
end instantiate AttributeRequirementScheme; 

instantiate MappingScheme; 
with Domain as Identifier, 

Domain as Identifier, 
errDomain as errIdentifier, 
__ as_=...,i 

with Range as Attribute, 
Range as Attribute, 
errRange as errAttribute; -- irrelevant 

end instantiate MappingScheme; 
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instantiate StackScheme; -- see Fig. 8/30 
with Item as Mapping, 

Item as Mapping, 
err Item as newmap; -- irrelevant 

end instantiate StackScheme; 

module !Symboltable; 
import Identifier from Identifier; 

Attribute, initial, errAttribute from Attribute; 
Bool, true, false, errBool, not _ , _ or _ from Bool; 
all from Stack; all from Mapping; 

operations 
!init: - > Stack; 
!enterblock: Stack -> Stack; 
!addid: Stack • Identifier· Attribute -> Stack; 
!leaveblock: Stack -> Stack; 
!isinblock: Stack • Identifier -> Bool; 
!retrieve: Stack • Identifier -> Attribute; 
!safeSymboltable: Stack -> Bool; 

declare s: Stack; id: Identifier; attr: Attribute; map: Mapping; 
operation axioms 

!init = push( newstack, newmap ); 
!enterblock( s ) == push( s, newmap ); 
!addid( s, id, attr ) == replace( s, addmap( top( s ), id, attr ) ); 
!leaveblock( s ) == 
if isnewstack( pop( s ) ) 

then !init 
else pop( s) 

end if; 
!isinblock( s, $ id ) = 
if !safeSymboltable( s ) 

then isdefinedmap( top( s ), id ) 
else errBool 

end if; 
!isinblock( s, I id ) = errBool; 
!retrieve( newstack, $ id ) = initial; 

-- As newstack does not belong to the domain, the value of !retrieve is arbitrary. 
-- This may be exploited in the actual implementation by using it as a sentinel 
-- value. 

!retrieve( push( s, map ), $ id ) = 
if !safeSymboltable( push( s, map) ) 

then 
if isdefinedmap( s, id) 

then evmap( s, id ) 
else !retrieve( s, id ) 

end if 
else errAttribute 

end if; 
!retrieve( errStack, $ id) = errAttribute; 
!retrieve( s, lid) = errAttribute; 
!safeSymboltable( push( s, map) ) = safeMapping( map ); 
!safeSymboltable( newstack) == true; -- irrelevant 
!safeSymboltable( errStack ) = false; -- irrelevant 

end module !Symboltable; 
end scheme !SymboltableScheme; 

Fig. 8/42 
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MappingScheme 

The specification of MappingScheme is given in Fig. 8/43. 

scheme MappingScheme [ 
instantiate IdentificationRequirementScheme 

rename Identification as Domain. 
erridentification as errDomain; 

end instantiate IdentificationRequirementScheme; 

requirement Range; 
export all; 
sort Range; 
operation 

errRange: -> Range; 
end requirement Range; 

]; 

module Mapping; 
import Domain. _ = _ from Domain; Range. errRange from Range; 

Bool. true. false. errBool from Boo1; 
export all; 
sort Mapping; 
constructors 

newmap: -> Mapping $$; 
addmap: S Mapping· $ Domain· Range -> Mapping $$; 

operations 
evmap: mapping· Domain -> Range; 
isdefinedmap: Mapping· Domain -> Boo1; 

declare map: Mapping; dom. doml. dom2: Domain; ran. ranb ran2: Range; 
constructor axioms 

doml =dom2 ~ 
addmap( addmap( map. doml. rani ). dom2. ran2 ) = 
addmap( map. dom2. ran2 ); 

domi =dom2 ~ 
addmap( map. domb ran) = addmap( map. dom2. ran ); 

not (domi = dom2) ~ 
addmap( addmap( map. domb ranl ). dom2. ran2 ) = 
addmap( addmap( map. dom2. ran2 ). domb ranl ); 

operation axioms 
$$ evmap( newmap. dom ) = errRange; 
$$ evmap( addmap( map. doml. ran ). dom2 ) = 

if doml = dom2 
then ran 
else evmap( map. dom2 ) 

end if; 
$$ isdefinedmap( newmap. dom) = false; 
$$ isdefinedmap( addmap( map. domb ran). dom2) = 

if doml = dom2 
then true 
else isdefinedmap( map. dom2 ) 

end if; 
?? evmap( map. dom) == errRange; 
?? isdefinedmap( map. dom) = errBoo1; 

end module Mapping; 

Chap. 8 
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end scheme MappingScheme; 

Fig. 8143 

!MappingScheme 

Here. J.MappingScheme defines the implementation of mappings by means 
of bounded arrays whose elements are lists of domain-range pairs. For 
reasons of efficiency (which eventually is the main purpose here). the 
bounded array is accompanied by a flag (boolean value) indicating whether 
a domain-range pair has been added of which the domain element 
(identifier) is unsafe. Due to this flag. the operation J.safeMapping can be 
implemented efficiently. Retrieval is implemented by means of hash 
coding. As mentioned before. implementation by hash coding (that does 
not preserve the order of addition) is possible because of the constructor 
axioms in Fig. 8/41 that deal with safe as well as unsafe identifiers. 

scheme !MappingScheme [ 
instantiate IdentificationRequirementScheme 

rename Identification as Domain. 
errIdentification as errDomain; 

end instantiate IdentificationRequirementScheme; 

requirement Range; 
import Bool. true. _ and _ from Bool; 
export all; 
sort Range; 
operations 

errRange: -> Range; 
_ = _: Range· Range -> Bool; 

declare ran. rant. ran2. ran3: Range; 
theorems 

ran = ran = true; 
rant = ran2 = ran2 = rant; 
( rant = ran2 ) and ( ran2 = ran3 ) => rant = ran3 true; 

end requirement Range; 

requirement HashDetails; 
import Domain. _ = _ from Domain; Nat. _ ~ _ from Nat; true from Bool; 
export all; 
operations 

minimum. maximum: -> Nat; 
hash: Domain -> Nat; 

declare dom. domt. dom2: Domain; 
theorems 

minimum ~ maximum = true; 
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]; 

minimum ~ hash( dom ) == true; 
hash( dom ) ~ maximum = true; 
doml = dom2 ~ hash( doml ) = hash( dom2 ); 

end requirement HashDetails; 

module DomainRange; 
import Domain, err Domain, _ = _ from Domain; 

Range, err Range, _ = _ from Range; Boo1, _ and _ from Bool; 
export all; 
sort DomainRange == Domain * Range; 
operations 

errDomainRange: -> DomainRange; 
_ = _: DomainRange * DomainRange -> Boo1; 

declare doml, dom2: Domain; ran!> ran2: Range; 
operation axioms 

errDomainRange == ( err Domain, errRange ); 
( dom!> ranI) = ( dom2, ran2 ) == ( doml = dom2 ) and ( ranI = ran2 ); 

end module DomainRange; 

instantiate ListScheme; -- see Fig. 4/6 
with Item as DomainRange, 

Item as DomainRange, 
undefined as errDomainRange, -- irrelevant 
__ as_=..-: 

end instantiate ListScheme; 

instantiate BoundedArrayScheme; -- see Fig. 7/20 
with Attribute as List, 

Attribute as List, 
initial as nil, 
errAttribute as nil; -- irrelevant 

with OrderedIndex as Nat, 
Index as Nat, 
_=_as_= __ 

_ ~_as_~..-: 
end instantiate BoundedArrayScheme; 

module BoundedArrayBool; 
import BoundedArray from BoundedArray; Boo1 from Bool; 
export all; 
sort BoundedArrayBool = BoundedArray * Bool; 

end module BoundedArrayBool; 

module !Mapping; 
import Domain from Domain; Range, errRange from Range; 

Boo1, true, false from Bool; all from BoundedArray; 
all from DomainRange; all from BoundedArrayBoo1; 
minimum, maximum, hash from HashDetails; 
List, nil, _ I _ from List; 

operations 
!newmap: -> BoundedArrayBool; 
!addmap: BoundedArrayBool* Domain * Range -> BoundedArrayBool; 
!evmap: BoundedArrayBoo1* Domain -> Range; 
!isdefinedmap: BoundedArrayBoo1* Domain -> Bool; 
!safeMapping: BoundedArrayBool-> Bool; 
evlist: List * Domain - > Range; 

Chap. 8 
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isdefinedlist: List· Domain -> Bool; 
declare ba: BoundedArray; b: Bool; dom, dom!> dom2: Domain; ran: Range; 
operation axioms 

!newmap == ( empty( minimum, maximum ), true ); 
!addmap( ( ba, b ), $ dom, ran) = 

( ba [ ( ( dom, ran) I read( ba, hash( dom ) ) ) / hash( dom ) 1, b ) ; 
!addmap( ( ba, b ), ! dom, ran) = 

( ba [ ( ( dom, ran) I read( ba, hash( dom ) ) ) / hash( dom ) 1, false) ; 
!evmap( ( ba, b ), $ dom ) = 

if b -- !safeMapping( ( ba, b ) ) 
then evlist( read( ba, hash( dom», dom) 
else errRange 

end if; 
!evmap( ( ba, b), ! dom ) == errRange; 
!isdefinedmap( ( ba, b ), $ dom ) = 

if b -- !safeMapping( ( ba, b ) ) 
then isdefinedlist( read( ba, hash( dom) ), dom) 
else errBool 

end if; 
!isdefinedmap( ( ba, b ), ! dom) = errBool; 
!safeMapping( ( ba, b ) ) = b; 
evlist( nil, dom ) == errRange; 
evlist( ( doml, ran) I list, dom2 ) == 

if doml = dom2 
then ran 
else evlist( list, dom2 ) 

end if; 
isdefinedlist( nil, dom ) = false; 
isdefinedlist( ( dom!> ran) I list, dom2 ) == 

if doml = dom2 
then true 
else isdefinedlist( list, dom2 ) 

end if; 
end module !Mapping; 

end scheme !MappingScheme; 

Fig. 8/44 

We invite the reader to define explicitly the concepts of the abstract 
implementations, i.e. data representation parts, procedure implementation 
parts, representation functions, implementation invariants or domains, 
abstraction functions, and equivalence relations for the abstract 
implementations given in this section, as we did for !StackScheme in the 
previous section. 

8.6 Properties and Relations 

In this section a number of properties that can be derived from the 
implementation constraints discussed in Section 8.3, is given. The 
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properties are illustrated by the simple example of the stacks. which was 
also used in Sections 8.1. 8.2 and 8.3. Also. the relations between the 
different concepts of abstract implementations (see Section 8.2.) are 
discussed. Furthermore. the natural composition of abstract 
implementations is studied. The lists of properties and relations are not 
exhaustive. No proofs are included. They can be found in [Van 
Horebeek87b. Van Horebeek88a]. 

Properties 

9. The representation function applied to an A-term of sort A denotes 
an object belonging to the domain Dom. i.e. meeting the 
implementation invariant: 

I( pTe a ) ) == true; 

Example 

declare it: TItem; 

theorems 
I( pT ( push( news tack. it ) ) = 
I( ( empty [ it / 0 ]. 1 ) ) = 
not isundefined( empty [ it / 0 ]. 0 ) == 
true 

Fig. 8145 

10. Two A-terms of sort A whose representations denote equivalent 
objects. denote the same object: 

pTe al ) ~ pTe a2 ) => al = a2; 

Example 

declare it: TItem; 

theorem 
pT ( pop( push( news tack. it ) ) ) N pT ( news tack ) 

-- since pTe pop( push( newstack. it))) = (empty [ it / 0],0)
( empty, 0) = pTe news tack ) 
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~ 

pop( push( newstack, it ) ) == news tack; 

Fig. 8146 

11. If two terms of sort B denote objects of the domain Dom and their 
abstractions denote the same object of A. then the terms obtained by 
consecutively applying the abstraction and the representation 
functions to the given terms. denote equivalent objects of B: 

I( b1 ) and I( b2 ) and ( @( b1 ) = @( b2 ) ) => 
pTe @T( b1 ) ) _ pTe @T( ~ ) ); 

Example 

declare it!> it2: T Item; 
theorem 

I( ( empty [ it1 / 0 ][ it2 / 1 ], 1 ) ) and 
I( ( empty [ itl / 0 ], 1 ) ) and 
@( ( empty [ itl / 0 ] [ it2 / 1 ], 1 ) ) = @( ( empty [ itl / 0 ]. 1 ) ) 

-- since @( ( empty [ itl / 0 ] [ it2 / 1 ], 1 ) ) == push( news tack, itl) == 
@( ( empty [ it1 / 0 1. 1 ) ) 

~ 

pTe @T( ( empty [ itl /0] [ it2 / 1 ]. 1 ) ) ) _ pTe @T( ( empty [ it1 / 0 ], 1 ) ) ); 
-- since both are equal to ( empty [ itl / 0 ], 1 ) 

Fig. 8147 

12. If two terms of sortB denote objects of the domain Dom and their 
abstractions denote the same object of A. then the given terms denote 
equivalent objects: 

I( b1 ) and I( b2 ) and ( @( b1 ) = @( b2 ) ) => 91 - b2: 

Example 

declare it!> it2: Item; 
theorem 

I( ( empty [ itl / 0 ] [ it2 / 1 1. 1 ) ) and 
I( ( empty [ itl / 0 ], 1 ) ) and 
@( ( empty [ itl /0] [ it2 / 1 1. 1 ) ) = @( ( empty [ itl /0 ], 1 ) ) ~ 
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( empty [ itl / 0 ], 1 ) - ( empty [ itl / 0 ] [ it2 / 1 ], 1 ); 

Fig. 8148 

13. If two terms of sort B denote objects of the domain Dom that are not 
equivalent. then the abstractions of the given terms denote distinct 
objects of A: 

I( b l ) and I( b2 ) and not ( b l - b2 ) => @( b l ) ¢¢ @( b2 ); 
where 

s ¢¢ t; 

means that 
s == t; 

does not hold. 

Example 

declare it: Item; 
theorems 

I( ( empty, 0) ) and I( ( empty [ it / 0 ], 1 ) ) and 
note ( empty. 0 ) ~ ( empty [ it / 0 ], 1 ) ) => 

@( ( empty. 0) ) = newstack ¢¢ 

push( newstack, it ) = @( ( empty [ it / 0 ], 1 ) ) 

Fig. 8149 

14. The abstraction function @: B -> A is surjective. i.e. each object of 
sort A is the abstraction of an object of the domain: 

Va E A. :3 b E Dom: @( b ) == a; 

Example 

declare it: Item; 

push( errStack, it ) denotes a stack and 
@( ( empty, errNat ) ) == errStack == push( errStack, it) 

Fig. 8150 
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15. If two A-terms of sort A denote the same object. then the terms 
obtained by consecutively applying the representation and abstraction 
function to the given terms. denote the same object: 

al = az => @T( pTe al ) ) = @T( pTe az ) ); 

Example 

declare it: Tltem; 

theorems 
pop( push( news tack. it ) ) = news tack ~ 

@T( pTe pope push( newstack. it) ) ) ) == 
@T( !pop( !push( !newstack. it))) = 
@T( (empty [ it / 0 1. 0)) = newstack == 
@T( ( empty. 0) ) == @T( !newstack) == 
@T( pTe newstack) ) 

Fig. 8151 

16. If two A-terms that are not of sort A denote the same object. then the 
terms obtained by applying the representation function to the given 
terms denote the same object: 

Xl = Xz => pTe Xl ) == pTe Xz ); 

Example 

declare it: Tltem; 

theorems 
isnewstack( news tack ) = isnewstack( pope push( newstack. it ) ) ) ~ 

pTe isnewstack( newstack) ) == !isnewstack( !newstack) == 
!isnewstack( empty. 0) == true = !isnewstack( empty [ it /01.0) == 
!isnewstack( !poP( empty [ it /0 1. 1 ) ) == 
!isnewstack( !pop( !push( ( empty. 0 ). it) ) ) = 
!isnewstack( !pop( !push( !newstack. it) ) ) = 
pTe isnewstack( pop( push( newstack. it) ) ) ) 

Fig. 8152 

17. Over the minimal domain. implementation constraint 7 is redundant 
with respect to implementation constraints 1 to 6. After 
reformulation we obtain: 
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Let Si be an A-constructor or an A-operation of sort A whose jfh . ... 
and j~h arguments are its only arguments of sort A. As the rank 
must be preserved. the jfh . ... and j~h arguments and the range of the 
implementation operation lSi are of sort B. If ah and a~l' ... and ajn 

and a~n are terms of sort A whose representations are pairwise 
equivalent. then replacing pTe ah ) by pTe a~l ) as jr argument of lSi. 

... and pTe ajn ) by pTe a~n ) as j~h argument of lSi results in an 
equivalent object of B: 

( pTe ah ) - pTe a~l ) ) and ... and ( pTe ajn ) - pTe a~n ) ) => 
!Si( ...• pTe all ) ....• pTe ajn ) •... ) -
!Si( •••• pTe a~l ) ..... pTe ak ) .... ): 

Example 

declare itt. it2, it3: Tltem; 

theorems 
pTe push( newstack, itl ) ) N pTe pope push( push( newstack. itl ), it2 ) ) ) 

-- since pTe push( newstack. itl ) ) = ( empty [ itl /0 ]. 1 ) -
( empty [ itl / 0 ] [ it2 / 1 ]. 1 ) = 
pTe pope push( push( newstack. itl ), it2 ) ) ) 

~ 

!replace( ( empty [ itl / 0 ]. 1 ). it3 ) = ( empty [ itl /0 ] [ it3 / 0 ], 1 ) == 
( empty [ it3 / 0 ]. 1 ) - ( empty [ it2 / 1 ] [ it3 / 0 ]. 1 ) == 
( empty [ itl / 0 ] [ it2 / 1 ] [ it3 / 0 ]. 1 ) == 
!replace( ( empty [ itl /0 ] [ it2 / 1 ]. 1 ). it3 ) 

Fig. 8/53 

18. Over the minimal domain. implementation constraint 8 is redundant 
with respect to implementation constraints 1 to 6. After 
reformulation we obtain: 

Let Si be an A-operation not of sort A whose jr. .,. and j~h 
arguments are its only arguments of sort A. As the rank must be 
preserved. the jfh. ... and j~h arguments of the implementation 
operation lSi are of sort B. whereas the range of lSi is of the same sort 
as the range of Si' If ah and a~l' ... and ajn and a~n are terms of sort A 
whose representations are pairwise equivalent. then replacing pTe all ) 

T( ') th T( ) T(') th by P ah as h argument of lsi. ... and p ajn by p aJn as jn 
argument of lSi results in the same object: 
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( pTe ajl ) - pTe a~l ) ) and ... and ( pTe a.in ) - pTe a~n ) ) => 
!Si( .... pTe ait ) ..... pTe ajn ) .... ) = 
!Si( .... pTe a~l ) ..... pTe a~n ) .... ); 

Example 

declare itt> it2: Tltem; 

theorems 
pTe push( newstack. itl ) ) N pTe pop( push( push( newstack. itl ). it2 ) ) ) 

-- since pTe push( newstack. itl ) ) = ( empty [ itl /0 ]. 1 )-
( empty [ itl / 0 ] [ it2 / 1 ], 1 ) == 
pTe pope push( push( newstack. it! ). it2 ) ) ) 

::l> 

!isnewstack( ( empty [ itl / 0 ]. 1 ) ) == false == 
!isnewstack( ( empty [ itl / 0 ] [ it2 / 1 ], 1 ) ) 

Fig. 8/54 

19. Let Si be an A-constructor or an A-operation of sort A whose jfh • ... 
and j~h arguments are its only arguments of sort A. As the rank 
must be preserved. the jfh • ... and j~h arguments and the range of the 
implementation operation !Si are of sort B. If the terms bit .... and bjn 
of sort B denote objects belonging to the domain. then the application 
of Si to the abstractions of bit •... and bjn denotes the same object as 
the abstraction of the application of the implementation operation !Si 

to bit .... and bjn: 
I( bit ) and ... and I( bjn ) => 

SiC .... @(bit ) ..... @( bjn ) ... ·) = @( !sl .. ·. bit· .... bjn ... ·)); 

Example 

declare it: Item; 
theorem 

I( empty [ it / 0 ]. 1 ) ::l> 
pope @( empty [ it / 0 ]. 1) ) == 
@( !poP( empty [ it / 0 ], 1 ) ); 

Fig. 8/55 
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Relations Between the Concepts 

We discuss the relations between the different concepts for abstract 
implementations. 

A. Given a data representation part. a procedure implementation part 
(and thus a representation function pT). an implementation invariant 
I and an abstraction function @ such that the implementation 
constraints 1 and 2 and property 19 are met. Then. one and only one 
equivalence relation - exists meeting the implementation constraints 
3.4.5 and 7. 

B. Given a data representation part. a procedure implementation part. 
and an equivalence relation - such that implementation constraint 3 
and property 10 are met. Then. one and only one minimal domain 
Dom and abstraction function @ exist such that the implementation 
constraints 1. 2. 4 and 5 are met. Each other domain and abstraction 
function are such that the domain contains the minimal domain and 
the abstraction functions are equal over the minimal domain. 

C. Given a domain Dom and an abstraction function @. Then one and 
only one equivalence relation - exists meeting implementation 
constraint 4 and property 12 (or 13). 

D. Given a domain Dom and an abstraction function @ such that 
property 14 is met. Then at least one data representation part and 
one procedure implementation part (and thus a representation 
function pT) exist such that the implementation constraints 1. 2 and 6 
are met. and such that. given the equivalence relation - defined by 
relation C. constraints 3. 5. 7 and 8 are met (i.e. Dom. @. pT and -
form a correct implementation). 

E. If a data type A is implemented by a data type B. the initial algebra 
of B is. in general. not isomorph with the initial algebra of A. This 
was demonstrated in Fig. 8/21. in which the abstract object newstack 
has several distinct representations. e.g.. (empty. 0) and 
( empty [ it / 0 1. 0 ). 

The quotient algebra of the domain with respect to the equivalence 
relation of the implementation. considering all operations but the 
implementation operations as hidden operations. is isomorph with the 
initial algebra of A. Consider in Fig. 8/21 the equivalence classes of 
- in the domain as objects and the nonnullary implementation 
operations as functions between these objects (the classes are 
indicated by a dotted line in Fig. 8/21). This algebra is isomorph 
with the initial algebra of Stack. 
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Natural Composition of Abstract Implementations 

Given a correct abstract implementation of module A by module B, 
denoted AB. The implementation module !A contains the implementation 
operations !SABi' Also for one of the directly imported modules of the 
implementation module !A, say module X, a correct abstract 
implementation is given. Furthermore, the latter abstract implementation 
is extended (as explained in Section 8.2.7) for the implementation 
operations !SABi of AB. Then, the natural composition of these abstract 
implementations is again a correct abstract implementation. 

We will consider the most interesting case, in which the directly 
imported module X is module B. Thus, an abstract implementation of 
module B by a module C is given, denoted BC. The implementation BC is 
extended in a second step for the implementation operations !sABi' Then, 
the natural composition of these abstract implementations is defined in the 
following way. 
The implementation invariant I of the natural composition is 

I( x ) = IBc( x ) and IAB ( @BC( x ) ) 
Dom = {x I x e DomBc and @BC( x) e DomAB} 

with lAB and IBc the implementation invariants of AB and BC respectively, 
and with DomAB and DomBc the respective domains. 
The abstraction function @ of the natural composition is defined as 

@ = @AB 0 @BC 

with @AB and @BC the abstraction functions of AB and BC respectively. 
The equivalence function - of the natural composition is defined as 

which is equivalent to 

with -AB the equivalence function of AB. 
The data representation part and the procedure implementation part of the 
natural composition consist of 

1. the additional implementation operations of the second step of the 
abstract implementation BC, denoted !S~Ck' 
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2. a mapping mdata from A-constructors onto implementation operations 
~S~Ck' such that mdata = mBCproc 0 mABdata with mABdata and mBCproc 
the mappings of the data representation part of AB and the 
(extended) procedure implementation part of BC respectively, and 

3. a mapping mproc from A-operations onto implementation operations 
~S~Ck' such that mproc = mBCproc 0 mABproc with mABproc and mBCproc the 
mappings of the procedure implementation parts of AB and BC 
respectively. 

An important property is that the natural composition of two correct 
abstract implementations invariably yields a correct abstract 
implementation. Another property is that the natural composition of 
abstract implementations is an associative operation. 

8.7 Bibliographic Notes 

John Guttag is undoubtedly one of the pioneers who introduced the ideas 
of abstract implementations [Guttag77, Guttag78b]. In [Guttag77] the 
concept of abstract implementations is informally illustrated by means of 
an example: a symbol table is implemented as a stack of arrays. For each 
operation f an implementation operation, denoted f' , is given. The 
abstraction function is called interpretation function and is denoted <1>. It is 
emphasized that the inverse of the interpretation function may not exist. 
Implementation invariants are called representation invariants. Nothing is 
said about equivalence relations. 

In [Guttag77] a data type B is considered a correct abstract 
implementation of data type A if the so-called representation invariants 
are verified and the inherent invariants are proved. An inherent invariant 
is obtained in the following way. Consider each axiom of data type A 

• if the sort of its left(right)-hand side is A, thus the axiom is of the 
form al == a2, then @T( pTe al ) ) = @T( pTe a2 )). This is equivalent 
to our property 15 (see Section 8.6) . 

• if the sort of its left-hand side is not A, thus the axiom is of the form 
Xl = X2, then pTe Xl ) = pTe x2 ). This is equivalent to our property 
16 (see Section 8.6). 

The properties required in [Guttag77] from B for being a correct abstract 
implementation of A, are weaker than our implementation constraints (see 
Section 8.3). In particular, Guttag allows that the implementation 
constraint 2, i.e. @T( pTe a ) ) = a, is not met as far as the representation 
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and inherent invariants are met. This will be illustrated by a small 
example. Assume that the following conditional axiom is added to the 
specification of the array (see p. 400 in [Guttag77]) 

NOT IS_SAME?( id1 • id2 ) => 
ASSIGN( ASSIGN( arr. id1 • attrsl ). id2• attrs2 ) = 

ASSIGN( ASSIGN( arr. id2. attrs2 ). id1 • attrsl ) 

expressing that the order of assigning is irrelevant if the indices 
(identifiers) are distinct. Assume that no analogous axiom is given for the 
data type Symboltable. As a consequence 

S == ADD( ADD( INIT. id1 • attrsl ). id2• attrs2 ) 

and 

T = ADD( ADD( INIT. id2• attrs2 ). id1 • attrsl ) 

denote distinct objects (i.e. they cannot be proved equal using equational 
reasoning) if id1 and id2 are distinct. But if we use the same representation 
as in [Guttag77]. then pTe S ) = pTe T). The abstraction function @T can 
be defined such that either @T( pTe S ) ) = S or @T( pTe T ) ) = T. But 
both are not possible. 

This illustrates that the definition of correct abstract implementation in 
[Guttag77] is less restrictive than ours. But the drawback of the former is 
that it is possible that when a new operation is defined. all the previous 
abstract implementations become useless and have to be designed anew. 
For instance. if a new operation f: Symboltable -> Bool is defined such 
that f( S ) results in true but f( T ) results in false. then the 
implementation by means of the array (such that pTe S ) = pTe T ) ) 
becomes useless. 

Our more restrictive viewpoint is a consequence of a different 
mathematical foundation. Our specifications are based on initial algebras 
while the specifications in [Guttag77] are based on observational 
equivalence (see Section 2.19). The basic idea of initial algebras is that all 
objects are distinct unless the opposite is specified. The hierarchical 
constraints guarantee that objects that were equal (or distinct) must not 
become distinct (equal) when the specification is extended. However. using 
observational equivalence two objects may be assumed equal as far as their 
external behaviour is the same. As a consequence two objects that have the 
same external behaviour may have the same implementation. But if later 
an operation is added such that their behaviour is no longer equivalent. this 
implementation becomes useless. 
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Guttag's second famous article about abstract implementations 
[Guttag78b] is also based on observational equivalence. Therefore. in his 
second article as well. his definition of abstract implementation is less 
restrictive than ours but the price that must be paid is high. as mentioned 
above. 

The concepts of abstract implementations are informally explained by 
means of examples: a stack is implemented as an array and an integer, a 
symbol table is implemented as a stack of mappings and. in an appendix, a 
mapping is implemented using a hash table. In contrast to Guttag's first 
article. his second one defines an equivalence function (by defining an 
equality operator). He asserts that the use of equivalence functions is a 
generalization of the use of abstraction functions (p. 1058 [Guttag78b]). 
But we have shown in this chapter that it is not so: abstraction functions 
and equivalence relations are equally general concepts for defining abstract 
implementations. 

In [Guttag78b] implementation operations are defined in a rather 
complicated way using a function SYMT. This function SYMT is the 
abstraction function although it is not explicitly mentioned in the article. 
Another confusing notation is the symbol "=" for the equivalence function. 
called equality operator. If bl = bz is written, do bl and bz denote the same 
objects or do they denote equivalent objects? 

In [Guttag78b] a data type B is considered an implementation of data 
type B if 

1. The representation invariant is proved. The representation invariant 
states that each object of A has a representation (Le. our property 
14). 

2. The so-called equality operator (i.e. equivalence function) must be 
reflexive, symmetric and transitive and must meet the substitution 
property. The substitution property is equivalent to our constraints 
7 and 8. 

3. The implementation operations must be closed with respect to the 
implementation invariants (i.e. our implementation constraint 1). 
This property is formulated in a rather complicated way. 

4. Consider each axiom of A 

• if the sort of its left(right)-hand side is A. thus the axiom is of the 
form al = az, then pTe al ) - pTe az). This is equivalent to our 
implementation constraint 3 . 

• otherwise the axiom has the form Xl = Xz. and then pTe Xl ) == 
pTe xz). This is equivalent to our property 16. 
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In the first part of [Bernot86a. Bernot86b] abstract implementations are 
discussed. For the implementation of sort A by sort(s) Bi. he introduces an 
intermediate sort. called A. constructed as a product of the lower level 
sorts Bi• but with an equality superimposed upon. This equality. Za 
representation de l'egalite. corresponds to our equivalence relation. The 
representation function from A to A is called l'operation de representation. 
In view of the potential problems with conventional equational reasoning. 
he avoids abstraction functions as such. On the other hand. he does 
provide a similar function called Z'operation de synthe'se from Bi to A. An 
abstraction function. as defined in our context. would have to be defined as 
a composition of l'operation de synthe'se and the inverse of Z'operation de 
representation. Many of the properties discussed in this text can be found 
mutatis mutandis in [Bernot86]. e.g .. constraints 3 and 4 correspond to Za 
validite and Za consistance. Our idea of correctness corresponds to his 
correction forte. 

In [Ehrig82] and [Sannella82] the relation between abstract 
implementations and categorical theory is emphasized. A critical survey of 
these works can be found in [Bernot86]. 

The technique of abstract implementations is not only used for 
algebraic specifications. In [Fielding82. Bjorner82] the technique is called 
data refinement and applied to VDM specifications. Data refinement is 
defined as a process in which a less abstract representation is chosen and 
new operations are defined in terms of the more concrete ones (p. 327 
[Fielding82]). Implementation invariants are called data type invariants 
and the abstraction function is called retrieve function. 

In [Van Horebeek87b. Van Horebeek88a]. we distinguished between 
data implementations and procedural implementations. In this book. a 
distinction between data representation operations and procedure 
implementation operations is made. Therefore the formulations of the 
definitions of the concepts are slightly different. However. the concepts 
themselves are completely analogous. As a consequence. the proofs that 
can be found in [Van Horebeek87b. Van Horebeek88a] remain valid. A 
case that is not considered in this book but that is treated in [Van 
Horebeek87b. Van Horebeek88a] is the following one. Assume that an 
abstract implementation of module A by module B is available. If in 
another module X a constructor Si of sort X is defined that has one or more 
arguments of sort A. the original abstract implementation can be extended 
by providing an implementation operation lSi. 
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Equational Reasoning 

As demonstrated in [Ehrig82] and later in [Bernot86]. conventional 
equational reasoning as discussed in Section 2.13 is no longer valid for 
axioms containing abstraction functions. In particular. when the 
abstraction functions are applied to elements not belonging to the domain. 
In [Van Gestel88] we claim this is not a problem inherent to the 
implementation formalism but to an inappropriateness of conventional 
equational reasoning for dealing with abstraction functions. Based on the 
approach of Section 2.13 [Goguen81]. we propose in [Van Gestel88] an 
augmented set of deduction rules to take abstraction functions into 
account. These rules are a proper generalization of those given in Section 
2.13 in that they are identical in the absence of abstraction functions. 

Imperative Implementations 

A topic left open in this book is the issue of an eventual imperative 
implementation. In fact several options are open. The simplest one would 
be to use the direct implementation available for any constructive 
implementation. assuming the refinements are sufficiently tuned towards 
efficiency. This would often impose a prohibitively large implementation 
effort. The problem may however be remedied in two different ways. 

Obviously. for abstract data types closely resembling the primitive data 
types available in imperative programming languages. one should directly 
substitute the corresponding imperative structures. rather than the 
(synthesized) direct implementation which often will use but a small 
fraction of the available primitive data types. Likewise. a number of 
abstract data types are presumably of such usefulness. it may well be 
worthwhile to handcraft a very efficient implementation for them. e.g .. 
involving many intricate refinements. By making these available as 
library primitives. the need to dwell too deeply into most implementations 
is reduced. 

Conversely, the strategy for synthesizing the direct implementations 
itself can and. when producing product quality. should be refined. Several 
efforts along this line are currently on the way. E.g .. [Thomas88a. 
Thomas88b] present a method for allocating objects optimized with respect 
to efficient access as determined from an analysis of the operation axioms. 
The method is only applicable to a limited set of specifications. namely 
non-indexed data types only (e.g .. no hash coding). but reduces the need for 
many handcrafted. special purpose implementations. The method itself is 
described as a generic abstract implementation. 
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Conclusions 
"To every thing there is a season. 

and a time to every purpose under the heaven: 
A time to introduce and a time to conclude: 

a time to specify. and a time to pluck up that which is specified ... " 
Old Testament, Ecclesiastes, III, 1-8 (nwdified) 

A number of important topics treated in the previous chapters will be 
discussed and evaluated. These topics are the mathematical foundations of 
algebraic specifications. the role of algebraic specifications in software 
engineering. the role of software engineering in algebraic specifications. the 
definition of a specification language. the power and limits of rigorous 
reasoning. constructivity and abstraction. and the relation between 
specifications and programs. Several case studies that have been worked 
out will also be evaluated. Finally. the software tools which have been 
developed will be discussed. 

Mathematical Foundations 

An important aspect of algebraic specifications is that they have a rigorous 
mathematical foundation. Thanks to these mathematical concepts. a well
defined and implementation-independent meaning can be given to algebraic 
specifications and due to the mathematical foundation rigorous 
mathematical reasoning on algebraic specifications is possible. 

In this book. an intuitive understanding of the underlying mathematical 
concepts have been strived after. Therefore. the book is directed towards 
software engineers rather than mathematicians. Much care has been taken 
of making the necessary links to references where mathematics is treated in 
depth. 

If we prefer to use one single algebra (possibly up to an isomorphism) 
as the underlying model of an abstract data type. the initial algebra is most 
appropriate for two reasons. Firstly. initial algebras are termalgebras. i.e. 
every object can be denoted by a variable-free term. Secondly. axioms 
enable literally different terms to denote the same object: consequently. it 
is quite logical to start from a situation where literally different variable
free terms denote different objects. Therefore. we have chosen initial 
algebras as underlying model. 

However. the class of all algebras that are behaviourally equivalent with 
the initial algebra. is more abstract than the initial algebra itself. This 
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class of algebras is in fact a generalization of the theory of many-sorted 
initial algebras [Sannella87]. The price that must be paid is that rigorous 
reasoning becomes heavier. E.g .• a theorem can be satisfied by one algebra 
and not by another. even if both algebras are behaviourally equivalent. 

Remaining within the mathematical framework of many-sorted initial 
algebras. we have proposed an error detection and error handling method. 
and the different concepts of abstract implementations have been 
formulated. discussed and compared. 

Algebraic Specifications in Software Engineering 

The role of algebraic specifications is situated in the design phase of the life 
cycle of a software system. We see algebraic specifications as a means to 
describe parts of a software system in an implementation-independent way 
with mathematical precision. In contrast with what many people claim. 
algebraic specifications are not a passe-partout to describe any part of the 
design of a software system. Algebraic specifications as described in this 
book are well-suited to describe data modules of a software system but 
they are inadequate to describe the design at the level of. e.g .. concurrent 
and communicating processes. Therefore. either algebraic specifications 
must be extended to deal with concurrency or another description 
formalism must be used. These topics are part of current research. They 
fall outside the scope of this book. 

Another point that may lead to confusion is that algebraic specifications 
are more of a formalism and a programming style than of a design method. 
In that respect. algebraic specifications as a software engineering tool do 
not suffice. There is a strong need for design methods to work with 
algebraic specifications. In our case study of the mini-PABX. emphasis is 
put on the object-oriented design method. where the message passing is an 
intrinsic property of the interface between the objects of the system. 

An important software engineering principle is abstraction. The 
specifications of data types are abstract because of two reasons. Firstly. 
they are defined up to an isomorphism. i.e. abstraction is made from 
representations. Secondly. because of the mathematical notion of algebras. 
only the fundamental properties of the objects and the functions are 
relevant. The what can be specified without the how. Algebraic 
specifications can be made at different levels of abstraction. At the highest 
level. the introduction of extraneous details places unnecessary constraints 
on the choice of an implementation and may potentially eliminate the best 
solution. However. if we are interested in implementation details. they can 
be specified using the same algebraic formalism giving rise to algebraic 
specifications at a lower level. Another kind of abstraction is abstraction 
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by parameterization. A generic mechanism that allows to define a whole 
family of analogous specifications was defined. This kind of abstraction 
promotes the reusability of specifications. 

Throughout the text rrwdularity as a software engineering principle is 
present at different levels: 

• at the level of the algebraic specification language 
Such a module is the smallest unit that encapsulates an abstract data 
type and on which import and export clauses can be defined. 

• at the level of the design method 
A number of modules can be grouped to represent a logic feature of the 
software system being described. This kind of modularity is such that 
we start with a kernel module covering the behaviour of a small subset 
of the software system. Then. the description may grow stepwise by 
adding modules representing one specific system feature. For our PABX 
example. the kernel module describes a two-party voice call. Then. 
modules can be added stepwise describing features such as enquiry. user 
actions. parking or camping. intrusion. transfer. pick up. booking. wake 
up. conference calls. etc. [Vergauwen87]. This kind of modularity is 
not explicitly supported by the algebraic specification language. In 
literature on algebraic specifications little attention has been paid to this 
important aspect of system design. 

• at the level of error handling 
As a result of the stepwise design method to treat error detection and 
error handling. each module consists of two parts: one dealing with the 
normal situations and one dealing with the exceptional (erroneous) 
situations. 

• at the level of implementation 
First. a high level specification of a data type is produced in which 
abstraction is made from all irrelevant details. only the relevant 
properties being described. Next. an implementation for the 
specification can be constructed using specifications of other data types. 
Then. in turn. for these specifications implementations can be made. and 
so on. 

Software Engineering in Algebraic Specifications 

In most literature on algebraic specifications. mathematical foundation has 
led to a minimal notation to illustrate the mathematical concepts by means 
of simple examples such as stacks. queues. sets and lists. In order to cope 
with more complex data types. this notation must be further extended 
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with features supporting software engineering methods and principles. 
Such features are very helpful to master the complexity and to enhance 
reliability. extendibility. robustness and continuity. Important issues that 
are related with software engineering are modules with import and export 
clauses. hierarchy of modules. information hiding. abstraction by 
parameterization. distinction between data and procedural abstraction. 
constraints for constructiveness. uniqueness and completeness. abstract 
implementations and error handling. 

In most algebraic specification languages no explicit distinction is made 
between data and procedural abstraction. In the specification language we 
designed. the distinction between constructors and operations is supported. 
The axioms are divided in constructor axioms and operation axioms. Then. 
it enables us to check the constructiveness. uniqueness and completeness 
constraints mechanically. 

Another direction in which a notation for algebraic specifications must 
be extended is error detection and error handling. Indeed. in a high level 
specification of a software system it is not sufficient to know exactly in 
which situations the system will fail to work correctly (error detection). 
but it must also be specified what will happen next in such situations 
(error handling). We strongly believe that the specification of error 
detection and handling must be part of the algebraic specification and not 
of a lower (implementation) level as suggested by [Liskov86]. The 
algebraic specification language we designed contains a powerful error 
detection and error handling mechanism. supporting a design method. The 
method consists in designing specifications in two steps. In a first step the 
specification is constructed only for safe objects as arguments. in a second 
step unsafe objects are dealt with. 

A formal specification without any informal documentation is hardly 
readable. All examples given in the previous chapters were commented 
with informal texts or pictures. Formal and informal specifications must 
not be seen as competitive but rather as complementary methods. A 
natural language is very appropriate for a first intuitive introduction and 
as documentation of a formal specification. Theorems play an important 
role as formal documentation for better understanding specifications. The 
readability of the formal specifications has been further enhanced by 
introducing many syntactic constructs. e.g.. ifthenelse. case and let 
constructs. Moreover. the use of import and export clauses makes it easier 
to locate the definitions of sorts. constructors and operations. 



www.manaraa.com

Conclusions 313 

An Algebraic Specification Language 

Using software engineering aspects such as mentioned above. the 
mathematical notation has been developed towards a practical specification 
language. During this transformation process. many case studies were 
performed. These experiments have led to successive improvements of the 
language. 

The result is a formal specification language based on many-sorted 
initial algebras. In fact. it is a strongly typed functional programming 
language. In contrast with most other algebraic specification languages as 
OBJ2 and ACT ONE. a strong constructivity is explicitly required. This 
means that we make a distinction between constructors and operations. as 
well as a distinction between constructor axioms and operation axioms. and 
we have uniqueness. completeness and constructiveness constraints. 
Moreover. a module mechanism is provided with import clauses. similar to 
the import clauses of Modula-2 [Wirth82]. and also export clauses. The 
parameterization concept is analogous to that of OBJ2 [Goguen84] and ACT 
ONE [Ehrigh85]. but instead of parameterizing only one module or one 
requirement. groups of modules and/or requirements may be 
parameterized. Another difference is the introduction of a more restricted 
form of a claimed requirement. namely the claimed module. Finally. the 
language contains an elegant notation supporting an explicit error detection 
and error handling mechanism. 

The algebraic specification language is used as a didactic vehicle to teach 
software engineering principles and methods. and to learn rigorous 
reasoning. Even people without professional training in computer science 
become familiar with the specification language in a few weeks. 

Rigorous Reasoning 

Due to the existence of a mathematical foundation. algebraic specifications 
are very suitable for rigorous reasoning. Rigorous reasoning in an early 
stage of a project is important because design inconsistencies can be 
detected before the implementation is actually started. By rigorous 
reasoning we are encouraged to analyze in detail the design decisions made 
at a given level. Rigorous reasoning is the appropriate means to get insight 
into the problem area in order to avoid wrong decisions in an early stage of 
the project. In this way. software production time can be decreased and 
maintenance becomes easier. but most of all the system is more reliable. 

Rigorous reasonmg is much concerned with proving a given assertion 
(theorem) to be correct. Rigorous reasoning is useful for several reasons: 
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• As we have seen in this book. properties of algebraic specifications can 
be specified as theorems. If we can prove the theorems. it will increase 
our confidence that the specification expresses what we have in mind. 

• When a scheme is instantiated. the actual parameters must meet the 
(formal) operation axioms and theorems of the claimed requirements 
and claimed modules. 

• If semi-constructive specifications are used. the first hierarchical 
constraint may be violated resulting in an inconsistent specification. By 
means of theorem proving the consistency can be proved as was done in 
Section 4.9. 

• Using the technique of abstract implementations. the implementation 
constraints must be proved. 

• Proving the termination of algebraic specifications considered as term 
rewriting systems is another interesting application of rigorous 
reasoning. In general. the termination problem is undecidable [Huet78]. 
but a method for proving termination of constructive specifications that 
succeeds in most cases [Bevers87] has been developed. With this 
method the termination of nearly all operations given in the examples 
of Chapters 3 until 8 have been proved. 

Unfortunately. theorem proving is a very hard and tedious job. 
Although many theorem proving systems exist. their users still need many 
hours to prove theorems even for small specifications. We believe that 
still many research and implementation efforts are required for producing 
theorem provers that can handle industrial examples. 

Constructivity and Abstraction 

The main characteristic of our specification language is its constructivity. 
Constructivity is an important property since it enables rapid prototyping. 
In this way. a software system can be tested before it has been 
implemented. The drawback of constructivity is that sometimes a less 
abstract specification is obtained. 

This drawback was illustrated by an example of a very simple robot 
system. The constructive specification was longer and less abstract than 
the non-constructive one. The former may be considered as an 
implementation of the latter. The advantage of the constructive 
specification is that rapid proto typing is possible. Furthermore. rigorous 
reasoning is easier. The price that must be paid is a lower level of 
abstraction. Although our algebraic specification language does only 
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support (semi-)constructive specifications. non-constructive specifications 
are of great importance in the design phase of a software system. Non
constructive specifications are considered as the highest documentation 
level of the design. Furthermore. the operation axioms of the non
constructive specification can be used as theorems in the constructive 
version. 

SpeCifications and Programs 

A critical reader may argue that there is still a wide gap between a formal 
specification and an implementation in a von Neumann language. In 
Chapter 8 the method of abstract implementations was presented. It is a 
top-down technique where the top level is the most abstract level and 
where implementation details are introduced in lower levels. We believe 
that this technique must be accompanied by a (semi-)automatic 
transformation system that introduces von Neumann concepts (tail 
recursion must be transformed into loops. sharing must be introduced 
where possible. etc.) [CIP85]. Moreover. theorem proving techniques and 
tools are necessary for checking implementation constraints of abstract 
implementations. As mentioned before. further progress in the field of 
theorem proving is needed. 

The ideal situation would be that an implementation is automatically 
derived from its specification. Although we are far from this situation. 
formal specifications are very useful. By making a formal specification we 
are forced to probe the matter to the very bottom in a very precise and 
complete way. Furthermore. rapid prototyping may be done before any 
implementation is constructed. In this way. the cost of making 
specifications is more than compensated and high quality software can be 
obtained. 

Case Studies 

The algebraic specification language has been successfully used in several 
case studies in different application fields. Some of them were specified in 
an earlier version of the specification language. The general conclusion of 
these case studies is that algebraic specifications are particularly suitable 
for describing the data parts of software systems. 

One of the first case studies we made was the formal specification of a 
small didactic system. called Karel The Robot [Pattis81]. It was situated in 
a comparative study of the denotational [Lewi85a] and algebraic [Lewi85b] 
specification formalisms. The conclusion was that the denotational 
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semantics with its high order functions are very suitable for specifying 
control structures whereas the algebraic approach with its abstract data 
types is more appropriate for data structures. 

In Chapter 5 and in [Van Horebeek87a]. the ferry problem was 
discussed. It is a nice example of a parameterized specification. The riddle 
of the farmer. the wolf. the goat and the cabbage. and the riddle of the 
missionaries and the cannibals are particular instantiations of the ferry 
problem. Building parameterized specifications requires considerably more 
time. but this additional effort is justified by the obtained reusability of 
the specifications. 

In [Van Coppenolle86] the Unix-like file system of B. Sufrin [Sufrin84] 
is algebraically specified. Substantial parts of graphical packages including 
GKS are specified in [Huyghe87]. An algebraic specification of an 
interpreter for an earlier version of our language can be found in 
[Devriendt86]. where an implementation in ADA is handcoded from the 
formal specification. The Knuth-Bendix completion procedure for our 
algebraic specification language is algebraically specified in [Stroobants87]. 

Within the context of our project we have been confronted with an 
industrial problem concerning a call handling system (p ABX). As the 
original informal descriptions of the features of the call handling system 
often were ambiguous and incomplete. detailed questions about the 
features could only be answered after these features had been implemented 
either by looking at the assembler code or by executing the code. As a 
remedy for this we have built a formal specification of a substantial part 
of the call handling system. This specification was designed according to 
the software engineering principles and methods that were advocated in 
this book. see Chapter 6. However. reducing the call handling system to a 
single monolithic data structure would have resulted in a less readable 
specification as the number of states grows out of control very rapidly. 
Therefore. an object-oriented design method was used. Each logical object 
is always in a definite state. Furthermore. the logical objects can 
communicate with each other by sending messages. When an object 
receives a message. the state of the object can be changed and it can in turn 
send messages to other objects. Using this object-oriented method the 
length of the specification grows about linearly with the number of 
described features. A subset of the specification of the PABX has been 
used for rapid prototyping. We believe that rapid prototyping has the 
effect of decreasing the total software development effort and that it 
results in software of higher quality. 
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Software Tools 

While elaborating the case studies mentioned above. the need for adequate 
software tools arose. Therefore. we have developed a number of software 
tools. A parser checks the syntax of the specifications. The import and 
export clauses enable testing of the interfaces between the modules and 
requirements. Since it is a strongly typed language. a type controller has 
been built. Furthermore. the uniqueness. completeness and 
constructiveness constraints can be checked mechanically. By means of a 
reductor. rapid proto typing is possible. In this way. formal specifications 
of software systems can be checked. tested and tuned before an 
implementation is built. A theorem prover based on explicit induction has 
been built for an earlier version of the language [Bevers85]. 

These software tools were written in Ada. We used the syntax-directed 
compiler generator MIRA [Mira84] and the metaprogramming language 
ABSYNT [Craeynest87]. The software tools were constructed for the 
specification language as described in this book except for mixfix notation. 
overloading. clusters and Cartesian products of sorts. Incorporation of 
error handling is planned for the near future. All examples of Chapters 3. 
4. 5 (the ferry problem) and 6 (the mini-PABX) have been checked and 
tested. An example of rapid prototyping. concerning the specification of 
the mini-PABX. can be found in Appendix B. A graphical interface for this 
mini-PABX has been built [Delva88]. 
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"This is the sort of English up with which I will not put." 
Winston Churchill 

The syntax notation used to describe the algebraic specification language 
was explained in the introduction of Chapter 3. 

<specification> = <element>+ 

<element> = 

<module> I <cluster> I <scheme> I <instantiation> I <run> 

<module> = 

" odl"[ 1 ]"" m u e <modu e name> ; 
[ <import clause> ] 
[ <export clause> ] 
[ < sorts part> ] 
[ < constructors part> ] 
[ <operations part> ] 
[ <declarations part> ] 
[ < constru~tor axioms part> ] 
[ <operation axioms part> ] 
[ < theorems part> ] 

"d"" odl"[ 1 ]"" en m u e <modu e name> ; 

<import clause> = 

"import" ( <item name list> "from" <place name list> 
[ <rename clause> ] ";" )+ 

<export clause> = 

"export" ( <item name list> [ "from" <place name list> ] 
[ "to" <place name list> ] ";" )+ 

<item name list> = 

<item name> ( "," <item name> )* 
I "all" ["except" <item name> ( "," <item name> )*] 

<item name> = 

<sort name> I <constructor name> I <operation name> 



www.manaraa.com

Appendix A: Syntax 319 

<place name list> = <place name> ( "," <place name> )* 

<place name> = <module name> I <requirement name> 

<rename clause> = "rename" 
( <item name> I <element name> ) "as" ( "identifier" I <pattern> )( "," 
( <item name> I <element name> ) "as" ("identifier" I <pattern> ) )* 

<element name> = <module name> I <cluster name> I 
<scheme name> I <requirement name> 

( " " I " II ) < sorts part> = sort sorts 
( <sort name> ["==" <sort name> ("*" <sort name> )*] ";" )+ 

<constructors part> = ( "constructor" I "constructors" ) 
( <constructor declaration> )+ 

< constructor declaration> = 

<constructor name> ( "," <constructor name> )* ":" 
[ [ "$" ] <sort name> ( "*" [ "$" ] <sort name> )* ] 
"->"<sort name> <safety condition> ";" 

< safety condition> = "$$" I "??" I "$" < boolean expression> "$" 

<operations part> = ( "operation" I "operations" ) 
( <operation declaration> )+ 

<operation declaration> = 

<operation name> ("," <operation name> )* ":" 
[ <sort name> ("*" <sort name> )*] "->" <sort name> ";" 

< constructor axioms part> = 

( "constructor" "axiom" I "constructor" "axioms" ) 
( < constructor axiom> )+ 

< constructor axiom> = 
[ b 1 .,," ] < 00 ean expresslOn> = > 
<constr expression> "==" <constr expression> ";" 

<operation axioms part> = 

( " .""." I " ."',.,, ) operatlon axIOm operatlon axloms 
( <operation axiom> )+ 

<operation axiom> = <left-hand side> "==" <expression> ";" 

< theorems part> = 

( "theorem" I "theorems" ) 
( < theorem> )+ 
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< theorem> = [ < boolean expression> "= >" ] 
<expression> "==" <expression> ";" 

<declarations part> = "declare" ( <declarations> )+ 

<declarations> = <variable> ( "," <variable> )* ":" <sort name> ";" 

<cluster> = 

"cluster" [ <cluster name> ] ";" 
( <module> I <requirement> I <instantiation> )+ 

"d""l "[ 1 ]"" en custer <c uster name> ; 

<scheme> = 

"scheme" <scheme name> [ <claimed element list> ] ";" 
< scheme element list> 

"end" "scheme" [ <scheme name> ] ";" 

<claimed element list> = "[" <scheme element list> "]" 

< scheme element list> = 

( <module> I <cluster> I <instantiation> I <requirement> )+ 

< requirement> = 
"requirement" [ <requirement name> ] ";" 

[ <import clause> ] 
[ <export clause> ] 
[ <sorts part> ] 
[ <operations part> ] 
[ <declarations part> ] 
[ < theorems part> ] 

"end" "requirement" [ <requirement name> ] ";" 

<instantiation> = 
"instantiate" <scheme name> [ <rename clause> ] ";" 

("with" <place name> "as" <place name> ( "," 
<item name> "as" <item name> )* ";" 

)* 
"end" "instantiate" [ <scheme name> ] ";" 

<run> = 
"run" [ <run name> ] ";" 

<import clause> 
[ <declarations part> ] 
[ <questions part> ] 

"end" "run" [ <run name> ] ";" 
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< questions part> = 

( "question" I "questions" ) 
( <question> )+ 

<question> = <expression> ":" 

<left-hand side> = [ <marker> ] 
( ( "identifier" I "qualified identifier" ) 
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["(" < constr expression> ( "," < constr expression> )* ")" ] 
I ( < token> I < constr expression> )+ ) 

<constr expression> = [ <marker> ] 
( <variable> 
I "(" < constr expression> H)" 
I ( "identifier" I "qualified identifier" ) 

["(" <constr expression> ( "," <constr expression> )* ")" ] 
I ( < token> I < constr expression> )+ ) 

<expression> = [ <marker> ] ( <ifthenelse construct> I 
< case construct> I < let construct> I "(" < expression> H)" I 
<prefix> I <mixfix> I <variable> ) 

<ifthenelse construct> = 

"if" < boolean expression> 
"then" < expression> 
"else" <expression> 

"end" "if" 

< case construct> = 
"case" <case index> "of" 

( <case arm> )+ 
[ "th . "n" . ""] o erwlse : < expresslOn > : 

"end" "case" 

< case index> = < expression> 

<case arm> = <choice> ":" <expression> ";" 

<choice> = <constr expression> 

<let construct> = 

"let" 
( <let arm> )+ 
"in" 

< let expression> 
"end" "let" 

<let arm> = <variable> "==" <expression> ";" 
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< let expression> = < expression> 

<prefix> = ( "identifier" I "qualified identifier" ) 
[ "(" <expression> ( "," <expression> )* ")" ] 

<mixfix> = ( <token> I <expression> )+ 

< boolean expression> = < expression> 

< module name> = "identifier" 

<cluster name> = "identifier" 

<scheme name> = "identifier" 

<requirement name> = "identifier" 

<run name> = "identifier" 

<sort name> = "identifier" I "qualified identifier" 

<constructor name> = "identifier" I "qualified identifier" I <pattern> 

<operation name> = "identifier" I "qualified identifier" I <pattern> 

<pattern> = ( <token> 1"_")+ 

<variable> = "identifier" 

<marker> = "$" I "?" I "I" I "$$" I"??" 

<token> = "identifier" I "number" I "+" I "-" I "*" 1"/" I "." I "%" I "A" I "@" I "&" I 
"[" I "]" I "="1 "," I ";" I ":" I "<" I ">" I "~" I "~" I "<=>" I "(" I ")" 
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"Saying is one thing. and doing is another." 
Montaigne 

At the Department of Computer Science. we have developed several 
prototypes of software tools: a parser. a checker of the import and export 
clauses. a type controller. a checker of the uniqueness. completeness and 
constructiveness constraints. and a reductor [Devriendt86]. In this way. 
formal specifications of software systems can be checked. tested and tuned 
before an implementation has been built. 

To enable rapid prototyping. the specification language is provided with 
a new construct. namely a run. A run contains questions. i.e. expressions. 
that must be reduced. It has the following syntactic form: 

<run> = 
" "[ ]"" run <run name> ; 

<import clause> 
[ < declarations part> ] 
[ <questions part> ] 

"end" "run" [ <run name> ] ";" 

< questions part> = 
("question" I "questions" ) 

( <question> )+ 

<question> = <expression> ";" 

The formal specification of the mini-PABX discussed in Chapter 6 was 
manually modified. The major modifications were the elimination of 
overloading and mixfix notation (because they are not yet supported by 
the reductor). Then. an instantiation of the scheme MiniPABX was made 
such that the requirement PhoneIdentity is bound with the module Nat: 

instantiate MlnIPABX; 
with Phoneldentlty as Nat. 

Phoneldentlty as Nat. 
errPhoneldentlty as zero. 
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eq as eq: 
end instantiate MiniPABX: 

Finally, a run was added. The question contained in the run describes the 
following scenario: The user of phone 2 goes off-hook and dials the number 
of phone 1. Then, the user of phone 1 goes off-hook. Next, the user of 
phone 2 operates the recall button and dials the number of phone 3. 
Finally, the user of phone 3 goes off-hook. At that moment we want a 
snapshot of the situation. This snapshot can be obtained by giving the 
following run to the reductor: 

run call2to1enquiry23: 
import al I from PhonePool. MessageScheduler. CallStates. 

PhoneStates. EnquiryStates. Phone. MessagePairs, Nat. 
PhoneMessages. UserMessages, Codes. EnqulryMessages: 

declare phpool, newpabx1. newpabx2 , newpabx3, newpabx4. 
newpabx5: PhonePool: ph1. ph2. ph3: Nat: 

question 
let ph1 -- succ( zero ): 

in 

ph2 -- succ( succ( zero) ): 
ph3 -- succ( succ( succ( zero) ) ): 

let phpool -- addPhone( addPhone( addPhone( 
emptyPhonePoo I • 

in 

newPhone( ph1 ) ). 
newPhone( ph2 ) ). 
newPhone( ph3 ) ): 

let newpabx1 -- transform( send( U( off Hook ). ph2 ). 
phpool ): 

In 
let newpabx2 -- transform( send( U( dialCode( 

phoneCode( ph1 ) ) ). ph2 ), newpabx1 ): 
in 
let newpabx3 -- transform( send( U( off Hook ). ph1 ). 

newpabx2 ): 
in 
let newpabx4 -- transform( send( U( button ). ph2 ). 

newpabx3 ): 
in 
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let newpabx5 -- transform( send( U( dlalCode( 
phoneCode( ph3 ) ) ). ph2 ). newpabx4 ); 

In 
transform( send( U( off Hook ). ph3 ). newpabx5 ) 

end let 
end let 
end let 
end let 
end let 

end let 
end let 

end run; 

The output produced by the reductor is as follows: 

+----------------------------------------------------+ 
I I 

I Interpreter for Modular Algebraic Specifications 

Ada version 1.0 

+----------------------------------------------------+ 

REDUCED: PhonePool.addPhone 
( PhonePool.addPhone 

( PhonePool.addPhone 
( PhonePool.emptyPhonePool. 

Phone.mk 

Phone.mk 

( Nat. succ 
( Nat. zero). 

PhoneStates. E 
( EnquiryStates.heldBy 

( Nat.succ 
( Nat. succ 

( Nat.zero ) ) ) ). 
PhoneModes.normal ) ). 

( Nat.succ 
( Nat. succ 

( Nat. zero) ). 
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Phone.mk 

PhoneStates.C 
( Cal IStates.connected 

( Nat.succ 
( Nat. succ 

( Nat.succ 

PhoneModes.enquiry 
( Nat.succ 

( Nat.zero ) ) ) ) ). 

( Nat.zero ) ) ) ). 

( Nat.succ 
( Nat.succ 

( Nat.succ 
( Nat.zero ) ) ). 

PhoneStates.C 
( Cal IStates.connected 

( Nat.succ 
( Nat.succ 

( Nat.zero ) ) ) ). 
PhoneModes.normal ) ) 

We see that phone 1 is held in a kind of waiting state by phone 2. i.e. 
the state of phi is heldBy( ph2). Communication between phones 2 and 3 
is possible. i.e. the state of ph2 is connected( ph3 ) and the state of ph3 is 
connected( ph2). This call is an enquiry call activated by phone 2 during 
a call with phone 1. i.e. the mode of ph2 is enquiry( phi ). Neither phone 
1 nor phone 3 have activated an enquiry call. i.e. phi as well as ph3 have 
mode normal. 

The output of the reductor as given above is not very readable. 
Therefore. we have made a graphical interface [Delva88]. running on a Sun 
3/50 workstation. The output of this interface is similar to the graphical 
representations of Chapter 6. The input to the interface can be given in a 
very natural way. e.g .. going off-hook is executed by touching the hook of 
the phone by means of the mouse. Thanks to rapid prototyping. we 
detected not only several inconsistencies and errors in the formal and 
informal specifications of the mini-PABX, but we detected also many 
design errors in the PABX itself. 
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