lvo Van Horebeek - Johan Lewi

Algebraic
Specifications
in Software
Engineering

An Introduction

Ivo Van Horebeek Johan Lewi

Algebraic Specifications
in Software Engineering

An Introduction

With 240 Figures

Springer-Verlag Berlin Heidelberg New York
London Paris Tokyo Hong Kong

Ivo Van Horebeek
Johan Lewi

Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200 A

B-3030 Leuven/Heverlee, Belgium

ISBN-13: 978-3-642-75032-8 e-ISBN-13: 978-3-642-75030-4
DOI: 10.1007/978-3-642-75030-4

Library of Congress Cataloging-in-Publication Data

Horebeek, Ivo van, 1959- Algebraic specifications in software engineering: an introduction
Ivo van Horebeek, Johan Lewi. p. cm.

Includes bibliographical references.

1. Software engineering. 2. Abstract data types (Computer science) I. Lewi, Johan. II Title.
QA76.758.H67 1989005.1°01°5102--dc20 89-26115

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broad-casting, reproduction on microfilms or in other ways, and storage
in data banks. Duplication of this publication or parts thereof is only permitted under the
provisions of the German Copyright Law of September 9, 1965, in its version of June 24,
1985, and a copyright fee must always be paid. Violations fall under the prosecution act of
the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1989
Softcover reprint of the hardcover 1st edition 1989

The use of registered names, trademarks, etc. in this publication does not imply, even in
the absence of a specific statement, that such names are exempt from the relevant protec-
tive laws and regulations and therefore free for general use.

Offsetprinting: Weihert-Druck GmbH, Darmstadt
Binding: J. Schiffer GmbH & Co. KG, Griinstadt
2145/3140-543210

To Lutgarde and Dany

Preface

"I prefer to view formal methods as tools,
the use of which might be helpful."
E. W. Dijkstra

Algebraic specifications are about to be accepted by industry. Many
projects in which algebraic specifications have been used as a design tool
have been carried out. What prevents algebraic specifications from
breaking through is the absence of introductory descriptions and tools
supporting the construction of algebraic specifications. On the one hand,
interest from industry will stimulate people to make introductions and
tools, whereas on the other hand the existence of introductions and tools
will stimulate industry to use algebraic specifications. This book should be
seen as a contribution towards creating this virtuous circle. The book will
be of interest to software designers and programmers. It can also be used
as material for an introductory course on algebraic specifications and
software engineering at undergraduate or graduate level.

Nowadays, there is general agreement that in large software projects
appropriate specifications are a must in order to obtain quality software.
Informal specifications alone are certainly not appropriate because they are
incomplete, inconsistent, inaccurate and ambiguous and they rapidly
become bulky and therefore useless. The only way to overcome this
problem is to use formal specifications. An important remark here is that a
specification formalism (language) alone is not sufficient. What is also
needed is a design method to write specifications in that formalism.

Formal specifications (languages and methods) are a promising topic
within software engineering. They play the role of a contract between
implementors and customers. They are useful as program documentation
of the abstractions being made during the design phase. They serve as a
mechanism for generating questions about design decisions and intrinsic
properties of the software system, thus improving understanding between
implementors and customers. Formal specifications form the starting-
point for verifications and validations. Finally, they enable rapid
prototyping. Three important categories of formal specifications are: pre-
and post-conditions, denotational semantics, and algebraic specifications.
Our belief sis that in'software design these formalisms are not competitors
and that each formalism must be used where it is most appropriate. This
book centres around algebraic specifications.

VIII Preface

Formal specifications in the design of large software are a challenging
topic because a number of psychological barriers have to be broken.
Formal specifications often have a bad reputation among designers ahd
implementors in industry. Formal often stands for "How do we make the
simple cases intricate?" and "How do we give a program a scientific and
academic gloss so that it looks mysterious for others?". First of all, these
people are hardly to be blamed since very little has been done on the
diffusion of the practical (software engineering) aspects of the theoretical
results. Most literature on formal specifications is of a theoretical nature
and is inaccessible for most practitioners.

In order to bridge the gap between theory and practice, there is a need
for good introductions. Writing such an introduction for one particular
class of specifications, namely algebraic specifications, is the aim of this
book. In this book we (1) show the benefits from using algebraic
specifications, (2) present an algebraic specification language and a method
to use this language, (3) explain the underlying mathematical foundations
of algebraic specifications and the consequences of the theory for the
practitioner, and (4) present not only small examples but also case studies
of a reasonable complexity.

The practitioner who expects just a number of recipes to construct
formal specifications will be disappointed while reading this book. It is
our strong belief that learning to use formal specifications is first of all a
matter of education rather than training. The process of constructing
algebraic specifications (and formal specifications in general) can only be
successful if one has at one’s disposal a minimal knowledge of the
underlying mathematical foundations. This knowledge is necessary to be
aware of what precisely one is doing when writing algebraic specifications.

In our book an attempt is made to integrate the mathematical
foundations and the engineering aspects of algebraic specifications. The
theoretical concepts are the starting-point for the design of a practical
specification language. The impact of traditional principles of software
engineering and advanced features of current high level programming
languages on the development of the specification language is discussed.
The main characteristic of the language is that it enables the design of
constructive specifications; this is useful for rapid prototyping. Other
important characteristics of the strongly typed specification language are
its module mechanism and its general parameterization concept. Finally,
the language contains an elegant notation supporting an explicit error
detection and error handling method. Many case studies have been carried
out, including an industrial specification of a call handling system (PABX).
These case studies show that an algebraic specification as a formalism is
not.sufficient. It must be accompanied by a design method. The design

Preface IX

method used for the PABX is object-oriented. In this book a contribution
is made to abstract implementations as well. Finally, programming
environments and rapid prototyping supporting the construction of
algebraic specifications are briefly discussed.

Acknowledgements

Part of this research has been supported by Bell Telephone Alcatel in the
context of a joint project between the Research Centre of Bell Telephone
and the Department of Computer Science of the Katholieke Universiteit
Leuven.

Our research group is greatly indebted to W. Van Puymbroeck, J. De
Man and L. Duponcheel (Bell Telephone, Antwerp) and P.-Y. Schobbens
(Universite Catholique de Louvain) for many interesting brainstorming
sessions about algebraic specifications and software engineering. We would
also like to thank J. Jacobs (Bell Telephone, Geel) for his support that
made the specification of the PABX possible.

It is also a great pleasure to thank our colleagues E. Bevers, E. Van
Gestel, E. Devriendt and B. Vergauwen for the fruitful collaboration and
their helpful criticism. All members of our department merit special
mention for their encouragement and assistance.

It is impossible to list exhaustively all people who have contributed to
this book. Special mention must be made to the students we collaborated
with in the context of their graduate theses and to the many students who
made helpful comments on parts of this text that have been used in a
course on formal specifications. Finally, we offer our warmest thanks to
our wives Lutgarde and Dany for their patience and encouragement
throughout the long writing period and for their help in proofreading the
manuscript.

Leuven, July 1989 I. Van Horebeek
J. Lewi

Contents

"Begin at the beginning," the King said very gravely,
"and go on till you come to the end; then stop."
"Alice in Wonderland’, Lewis Carroll

1. Introduction

2

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Software Engineering

Software Life Cycle

Abstract Data Types and Specifications

Why Specifications ?

Why Formal Specifications ?

Algebraic Specifications, an Intuitive Approach
Survey

Historical Remarks on Algebraic Specifications

Abstract Data Types as Initial Algebras

2.1
22
2.3
2.4
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

Many-Sorted Algebra, Signature and Graphical Notation
Homomorphism and Isomorphism
Variable-Free Termlanguage

Word Algebra

Signature, Variety and Termalgebra

Signature and Initial Algebra

Abstract Data Types Defined by a Signature
Termlanguage

Substitution and Ground Substitution
Assignment

Axioms and Presentation

Presentation, Variety and Termalgebra
Equational Reasoning

Presentation and Initial Algebra

Abstract Data Types Defined by a Presentation
Examples

Induction

Hidden Operations and Sorts

Bibliographic Notes

-

NO Wb W

[

—
£

15
20
23
24
26
26
27
27
23
29
30
32
32
35
38
38
43
55
58

XII Contents

3. An Algebraic Specification Language

31

32
33

3.4

35
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

Modularity

3.1.1 Modules

3.1.2 Import and Export Clauses
3.1.3 Export of the Import
Hierarchical Specifications

Notational Extensions

3.3.1 Ifthenelse Construct

3.3.2 Mixfix Notations

3.3.3 Conditional Axioms

3.3.4 Case Constructs

3.3.5 Let Constructs

3.3.6 Qualified Names and Renaming
Parameterized Specifications

3.4.1 Parameter Morphisms

3.4.2 Instantiations

3.4.3 Requirements and Induction
3.4.4 Remarks on Hierarchical Constraints
3.4.5 Renaming and Qualified Names
3.4.6 Partial Instantiations

3.4.7 Parameterized Parameter Passing
3.4.8 Parameterizing Requirements
Clusters

Bibliographic Notes

. Constructive Specifications

Simple Example

Constructive Specifications
Theorems

Equality Operation

Example

Constructor Axioms
Semi-Constructive Specifications
Inconsistency

On Constructing Requirements
Claiming Modules

The Cartesian Product of Sorts
Constructivity and Abstraction
Bibliographic Notes

66

68
68
71
73
74
76
76
78
80
81
82
84
85
90
91
93
94
99
101
103
107
111
114

120

121
123
125
128
129
130
134
139
140
151
155
157
159

Contents

5. A Case Study : the Ferry Problem

6.

7.

5.1
5.2
5.3
5.4
5.5
5.6

Informal Description of the Ferry Problem
Formal Specification of the Ferry Problem

The Farmer, the Wolf, the Goat and the Cabbage
The Missionaries and the Cannibals

Specification of a Search Strategy

Conclusion

A Case Study : the Mini-PABX

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11

Object-Oriented Design Method
Modularity

The Abstract Data Type Phone
Error Handling

The Abstract Data Type Mini-PABX
The Scheduling of the Messages
Skeleton of the Mini-PABX

A Two-Party Voice Call

6.8.1 The Module Phone

6.8.2 The Module PhoneMessages
6.8.3 The Module NextPhone
6.8.4 The Module OutPhone
Enquiry Call

6.9.1 The Module Phone

6.9.2 The Module PhoneMessages
6.9.3 The Module NextPhone
6.9.4 The Module OutPhone
User Actions

6.10.1 The Module PhoneMessages
6.10.2 The Module NextPhone
6.10.3 The Module OutPhone
Conclusion

Error Handling

7.1
72
7.3
7.4
7.5
7.6
7.7

The Need for an Error Handling System
Safety Functions

Safety and Unsafety Markers

Method of Error Specification

Safety Conditions

Miscellanies

Bibliographic Notes

X1l

164

165
166
169
171
173
175

176

177
180
182
184
184
187
188
189
190
191
196
197
198
199
201
205
206
206
207
208
210
212

215

216
220
221
224
227
238
243

XIV Contents

8. Abstract Implementations

8.1 Example of the Stacks
8.2 Concepts of Abstract Implementations
8.2.1 Data Representation Part of {A
8.2.2 Procedure Implementation Part of {A
8.2.3 Representation Function
8.2.4 Implementation Invariant
8.2.5 Abstraction Function
8.2.6 Equivalence Relation
8.2.7 A Multi-Step Implementation Method
8.3 Implementation Constraints
8.4 Example: Scheme of Stacks
8.5 Example: Scheme of Symbol Tables
8.6 Properties and Relations
8.7 Bibliographic Notes
Conclusions
Appendix A : Syntax

Appendix B : Rapid Prototyping, the Mini-PABX

Bibliography

Index

246

250
254
256
257
258
262
265
268
270
27
278
287
295
304

309

318

323

327

343

1. Introduction

"A problem well defined is half solved."
old adage

1.1 Software Engineering

The aim of software engineering is to construct software of high quality.
By software we mean large programs. Most design and programming
techniques directed towards the development of small programs cannot
simply be generalized to be applicable to large scale software development.
Qualities, sometimes called software engineering criteria, are divided into
two categories: external and internal qualities. The external qualities we
are particularly interested in are correctness, robustness, extendibility,
reusability and efficiency. The internal qualities dealt with in this book
are modularity and continuity. Each of these qualities is now briefly
discussed. More detailed discussions can be found in literature. Some of
the many authors dealing with the construction of quality software are
[Boehm78, De Remer76, Parnas72b, Meyer88, Liskov86, Jackson75,
Jackson83].

Correctness or reliability is the ability of a software system to perform
its services as defined by its requirements definition and specification.

Robustness is the ability of a software system to continue to behave
reasonably even in abnormal situations.

Extendibility is the ease with which a software system can be adapted to
changes of its requirements definition and specification.

Reusability is the ability of software modules to be reused as
components to construct new software for other applications.

Efficiency is the ability of software to make good use of hardware
resources and operating system services.

Modularity is the property of software to be divided into more or less
autonomous components connected with a coherent and simple interface.
Modularity is not only important at the implementation (program) level
but also at the design (specification) level. At the implementation level,
examplesof mmodulesvare procedures, data, data types, iterators and
processes. Procedures are often called actions, subroutines, functions and
subprograms. Data types are known as packages in Ada [Ada83], classes in

2 Introduction Chap. 1

Smalltalk 80 [Goldberg83], clusters in CLU [Liskov86] and modules in
Modula-2 [Wirth82]. An important aspect of modularity is information
hiding. More details on modularity aspects of software can be found in
[Parnas72b, Meyer88, Liskov86, Yourdon79].

Continuity is a quality that yields software systems that won't need
drastic modifications because of small changes in the requirements
definition. This means that small changes in the requirements should
affect only one or a few modules but not the structure as a whole. So,
continuity is heavily related to modularity. Since any software system is
likely to evolve, especially during the maintenance phase of the software
life cycle (after the system has been released), continuity is an internal
quality that plays a crucial role in software development.

1.2 Sof'tware Life Cycle

In a software project one can distinguish several phases of its life cycle, as
shown in Fig. 1/1.

* problem analysis phase
requirements definition
* design phase
specification
* implementation phase
program
test phase

working program (release)

* maintenance phase

Fig. 1/1

Since the working scheme as shown in Fig. 1/1 is in fact schematic, it can
be misleading. It therefore needs a few comments. Firstly, testing is an
activity that is not located in one single phase but it is spread over all

Sec. 1.2 Software Life Cycle 3

phases of the life cycle. Secondly, the maintenance phase covers not only
repairing activities of errors but also any changes due to the evolution of
the software system before and after the program has been released.
Maintenance usually involves many iterations over the other phases.
Following [Boehm76, Lientz80], maintenance costs cover approximately
50-75 % of the total cost of software. One of the key benefits from using
formal specifications is the detection of design errors in an early stage of
the software development. Structuring the formal specification into the
appropriate modules will make software easier to modify. In this way,
maintenance can be kept under control, avoiding an abrupt increase of the
program entropy whenever changes have to be made in the requirements
definition and specification.

1.3 Abstract Data Types and Specifications

In literature a number of techniques to construct quality software can be
found.” By quality software we mean software that meets the software
engineering criteria or more exactly a trade-off between these criteria, since
some of these criteria are in conflict. Examples of such software
engineering techniques are Jackson's system development [Jackson83],
Yourdon's structured design [Yourdon79] and structured analysis [De
Marco78]. All these methods have one important aspect in common:
software is structured around data rather than around functions. The
reason for this choice is that functions are not the most stable part of a
system. Structuring around data yields systems with a higher degree of
continuity and reusability. The key point in structured design of software
systems is to look for abstract data types, abbreviated ADTs in the sequel.
Roughly speaking, a specification of an ADT describes a class of data
structures by listing the services available on the data structures, together
with the intrinsic properties of these services.

By specifying an ADT, we do not care how a data structure is actually
represented or how each operation is implemented. What matters is what
the data structure signifies at the level of a customer who wants to make
instantiations (individual data structures) of the data type for further use
in his program. To illustrate the concept of ADT, let us take the class of
stacks of natural numbers, called Stack. The specification of Stack will
list the services newstack, push, isnewstack, pop and top. Furthermore,
given an object of type Stack, it describes how these services must be called
for that object and it describes the intrinsic properties of these services.
An example of such a property for Stack is

4 Introduction Chap. 1

pop(push(s,n)) ==s;

where s is any Stack object and n is any natural number. This property
simply expresses that pushing a natural number n on a stack s, followed
by popping the resulting stack, yields the original stack s. The identifiers s
and n are variables ranging over instantiations (objects) of types Stack and
Nat respectively.

Writing specifications of ADTs is an activity that is located in the
design phase of the software life cycle. Specifications are designed in a
modular way. Roughly speaking, with each specification module in the
design phase corresponds a program module in the implementation phase.
Specification modules, unlike program modules, make abstraction of all
irrelevant details of data representation and procedure implementation.
An important remark is that finding the appropriate set of specification
modules is not always an easy job. The choice of the modules must be
such that complexity of the module interfaces is minimal and that
continuity of the software system is maximal. Mostly, a trade-off
between these criteria has to be strived for.

1.4 Why Specifications ?
A specification may serve different purposes.

o Specifications are obviously used for program documentation. They
describe the abstractions being made.

o Specifications serve as a mechanism for generating questions. The
construction of specifications forces the designers to think about the
requirements definition and the intrinsic properties and functionalities
of the software system to be designed. In this way the construction of
specifications helps the designers to better understand these
requirements and to detect design inconsistencies, incompleteness and
ambiguities in an early stage of software development. Such a better
understanding is already an important benefit from the specification
activity.

o A specification can be considered as a kind of contract between the
designers of a program and its customers. It describes the obligations
and rights of both parties. A specification binds customers and
designers by expressing the conditions under which the services of a
module are legitimate and by defining the results when calling these
services.

Sec. 1.4 Why Specifications ? 5

o Specifications are a powerful tool in the development of a program
(module) during its software life cycle. The presence of a good
specification helps not only designers, but also implementors and
maintainers. The modularity of the specification must be reflected in
the modularity of the program. A specification serves as a blueprint
for the implementation phase, where a program is written in some
executable language. In most software projects, the language used is of
an imperative nature. Unlike specifications, programs deal with
implementational details as memory representation (such as arrays,
records, variant records, linked lists), memory management (such as
dispose in Pascal, free in PL1 and unchecked deallocation in Ada) and
efficient (in time and space) coding of the system services.

Writing a specification must not be seen as a separate phase in the
construction of software. Also, specifications must be adapted each
time modifications are introduced in any of the other phases of the
software life cycle. Especially, specifications have to be updated during
the maintenance phase taking into account the evolution of the software
system.

e With regard to program validation, specifications may be very helpful
to collect test cases to form a validation suite for the software system.

1.5 Why Formal Specifications ?

Specifications must be at the same time compact, complete, consistent,
precise and unambiguous. From experience, it has turned out that a
natural language is not a good candidate as a specification language. In
industry, a lot of effort has been devoted to writing informal specifications
for software systems, but little or no attention is paid to these
specifications when they are badly needed, i.e. during maintenance of the
software. Why is it so ? Specifications in a natural language rapidly
become bulky, even to such an extent that nobody has the courage to dig
into them. Moreover, such specifications are at many places inaccurate,
incomplete and ambiguous. It must be very discouraging to discover after
a long search that the answer can only be obtained by running the system
with the appropriate input data. The tragedy in software development is
that once a program modification is made without adapting the
corresponding specification, the whole specification becomes obsolete for
the rest of the software life cycle and the whole specification effort is lost.
Having a non-existent or an obsolete specification is the reason why there
exist.so.many.software. systems the behaviour of which nobody can

6 Introduction Chap. 1

exactly derive in a reasonable lapse of time. It also explains the many
situations where services of software systems are marketed and advertised
that in reality do not exist. Notice that running the program with the
appropriate input can only give partial answers to questions about the
system behaviour.

We do not assert that informal specifications are useless. They may be
very useful as a first introduction to a software system and as comment to
enhance the readability of the formal specifications. Formal and informal
specifications must not be regarded as competitive but rather as
complementary. :

Formal specifications, unlike informal ones, enable the designer to use
rigorous mathematical reasoning. Properties of the specification (and thus
of the program to be constructed at a later stage) can be proved to be true
just as theorems can be proved in mathematics. In this way, design errors
(e.g.. inconsistencies and incompleteness) can be detected in an early stage
of the development. Another aspect of mathematical reasoning with
formal specifications is the ability to verify formally that the
implementation (program) satisfies its specification. Both aspects of
mathematical reasoning have to do with what is called program correctness
proofs.

There is an intensive debate around rigorous mathematical reasoning.
Algebraic specifications enable the designer to prove certain properties of
his design and to prove that the implementation (program) meets its
specification. We must admit that this is easier said than done. Most
examples in literature apply proof techniques to small examples. For large
software, correctness proofs would require practical tools such as
intelligent theorem provers. Unfortunately, automatic theorem proving
for large software is still beyond today’s program proving technology.
However correctness proofs of parts of the system and verification of some
of the properties are feasible. The general rule is to prove and verify as
much as possible. It is a well-known fact that correctness proofs and
verification show the absence of errors, whereas testing only indicates the
presence of errors for some sample input of the system.

Formal specifications that are constructive, can be directly executed,
although with poor performance. Then, formal specifications are used in a
process called rapid prototyping. With constructive formal specifications,
one is able to design top-down, to verify top-down and even to test top-
down. The notion of top-down means here that the specification is treated
before any instruction of the implementation has been written. A benefit
from making constructive formal specifications that certainly will interest
the practitioner, is that this kind of rapid prototyping enables designers
and._customers.to._get user feedback and hands-on experience with the

Sec. 1.5 Why Formal Specifications ? 7

software system before the implementation already gets started. In this
way, design errors due to misunderstandings between designers and
customers, and lack of understanding of the service mechanisms to be
provided by the system can be detected and corrected at an early stage.
With the concepts of constructive formal specifications and direct
implementation, the boundaries between specifications and
implementations are mnot very sharp. Both specifications and
implementations are in fact programs, but the former are of a more
abstract level than the latter. Moreover, in the life cycle of a software
system there may be more than two levels of abstraction. A module may
serve as a specification for the lower level and at the same time as an
implementation for the higher one.

Many specification formalisms can be found in literature [Milgrom88].
In the axiomatic method, the behaviour of a program is characterized by
pre- and post-conditions. Its pioneers are Floyd, Hoare and Dijkstra
[Floyd67, Hoare72, Dijkstra76]. Another well-known formalism is
denotational semantics [Stoy77, Gordon79]. Especially the use of high
order functions is very useful to describe the powerful control structures
of programming languages. Since the mid seventies, a new formalism
based on the concept of abstract data types has been developed. As many-
sorted algebras are the underlying mathematical model, such specifications
are called algebraic specifications. In this book, we will only concentrate
on algebraic specifications.

1.6 Algebraic Specifications, an Intuitive
Approach

Recall that an ADT is a class of data structures described by an external
view, i.e. available services and properties of these services. An algebraic
specification is a mathematical description of such an ADT. As an
introduction, we now intuitively discuss the abstract data type Stack,
formally described by the algebraic specification shown in Fig. 1/2. A
more elaborate discussion of this example will be given in the following
chapters.

The sort(s) part lists the names of the abstract data types being
described. In this example there is only one type, namely Stack. The
operations part lists the services available on instances of the type Stack
and syntactically describes how they have to be called. These parts are

8 Introduction Chap. 1

sort Stack;

operations
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;

declare s: Stack; n: Nat;

axioms
isnewstack(newstack) == true;
isnewstack(push(s, n)) == false;
pop(newstack) == newstack;
pop(push(s,n)) ==s;
top(newstack) == zero;
top(push(s,n)) ==n;

Fig. 1/2

called the signature of the algebraic specification. As an example,
push: Stack * Nat -> Stack;

means that push is a function with two arguments, of respective types
Stack and Nat, and yields a result of type Stack. Notice that newstack isa
nullary function, i.e. has no arguments, and yields a result of type Stack.
It is also called a constant. The term function here is used in the
mathematical sense, not in the context of programming. So, functions in
algebraic specification have no side-effects. In our example, push takes as
arguments a stack s and a natural number n and produces a new stack
which is identical to the input stack except for one more element on its top.
Side-effects will be introduced at the implementation stage, when efficient
programs for the services available on stacks are written. Implementing
the algebraic specification, we usually do not want to copy the input stack
for every call of push. The service push will be implemented as a
procedure with the Stack parameter as a call by variable (sometimes
termed call by reference). The side-effect of calling push consists in the
direct modification of the input parameter of type Stack. Algebraic
specifications are some sort of functional specifications. By systematically
avoiding any kind of side-effects, properties of the abstract data type can
be expressed in a simple and rigorous way. For the algebraic specifications,
these properties will have the form of axioms (as explained later) and
theorems (see Section 4.3).

The axioms part formally describes the semantic properties of the
algebraic..specification...So..far,, the specification applies to any data

Sec. 1.6 Algebraic Specifications, an Intuitive Approach 9

structure with services described by functions with the same signature,
such as queues and lists. The axioms will restrict the specification towards
stacks by listing the fundamental properties of stacks. One of these
properties is described by the axiom

pop(push(s,n)) ==s;
This axiom was explained in Section 1.3. Another axiom is
isnewstack(newstack) == true;

expressing that the function isnewstack applied to a newly created stack
yields true, whereby true is a nullary function of the boolean values
imported from another algebraic specification module. Import and export
of algebraic specification modules and module dependency will be covered
in Section 3.1. The variable n ranges over the set Nat of natural numbers,
whose ADT is also defined elsewhere. As a last example, consider the
axioms

pop(newstack) == newstack;
top(newstack) == zero;

This is a naive but correct specification of what happens when one pops an
empty stack or takes the top element of an empty stack. Stack is specified
in this way only to avoid the discussion of abnormal (exceptional) cases at
this early stage. What we want is that the action pop applied to an empty
stack yields some kind of erroneous stack and that the action top applied to
an empty stack yields an erroneous natural number. We also want to
decide whether further actions on an erroneous stack will keep the stack in
its error state or transform the erroneous state back into a normal state.
This latter process is called error recovery. Also more than one Kind of
erroneous stack will be possible to model, e.g., overflow and underflow of
stacks. Error handling and error recovery will be thoroughly discussed in
Chapter 7.

The algebraic specification of Stack expresses only the essential
properties of the Stack services without overspecifying. It makes
abstraction from any Stack representation and service implementation
details. It is overspecification that makes verification and rigorous
reasoning difficult. Algebraic specifications provide a computational
model with ADTs. As an example of such computations, consider the
following expressions

10 Introduction Chap. 1

declare sl1, s2: Stack; n: Nat;

s1:= pop(push(push(newstack, 5), 7));

s2:= push(push(push(newstack, 0), top(s1)), 4);
n:= top (pop(pop(s2)));

By applying the axioms, successive simplifications may be performed.
These algebraic simplifications can be carried out mechanically. After
these simplifications have been carried out, the above expressions become:

s1:= push(newstack, 5);

top(sl):=5;

s2:= push(push(push(newstack,0),5), 4);
ni=0;

This kind of symbolic computation is heavily related to concepts such as
constructivity, term rewriting and rapid prototyping.

Furthermore, the book deals with a number of important design issues
centred around specifications in general and algebraic specifications in
particular. Some of the issues are constructivity versus non-
constructivity, modularity, abstraction by parameterization, rigorous
reasoning, error detection, error recovery and abstract implementations.

1.7 Survey

Chapter 2 discusses the mathematical foundations of algebraic
specifications. ADTs are defined as many-sorted initial algebras. Due to
these underlying mathematical concepts, algebraic specifications can be
made accurate and unambiguous. They enable us to give a well-defined
and implementation-independent meaning to an ADT. It is not our
intention, however, to go deeply into mathematics. We are especially
interested in the engineering aspects of formal specifications. The
mathematical concepts are informally described and illustrated by many
examples. Rigorous reasoning is obtained by equational reasoning and by
induction. The power of the algebraic specification method is increased by
using hidden functions, which can also be used as auxiliary functions.
Chapter 3 deals with principles of software engineering. These
principles are incorporated into the mathematical notation developed in
Chapter 2, in order to obtain a practical specification language.
Programming in this language results in modular, reliable, readable and
reusable specifications. A technique of hierarchical specifications is

Sec. 1.7 Survey 11

proposed, providing us with a modular specification method. Import and
export clauses in modules form the interfaces between the modules and
provide additional safety. The readability is enhanced by notational
extensions. Another important feature is the possibility of parameterized
specifications, resulting in more reusable and readable specifications. Also
parameterized parameter passing is allowed.

In Chapter 4 we restrict the specifications to constructive and semi-
constructive ones in order to enable rapid prototyping. In this way, a style
of specifying is proposed distinguishing between data and procedural
abstraction. By introducing constraints that can be checked in a
mechanical way, the chance of writing erroneous specifications can be
reduced considerably. The specification will be considered as the input for
a term rewriting system.

In Chapter 5 a non-trivial case study, called the ferry problem, is
discussed. This ferry problem is a generalization of the riddle of the
farmer, the wolf, the goat and the cabbage. It is a nice example of
abstraction by parameterization. A distinction will be made between the
specification of the problem on the one hand (the what) and the
specification of an implementation on the other hand (the how).

One of the most challenging case studies we made is the formal
specification of a substantial part of a call handling system, the ITT 5400
BCS [Bell85b]. In the specification abstraction is made from technical
information about the ITT 5400 BCS (e.g.. a user needs not to know it is
based on a 16-bit micro-processor). Because of the considerable length of
this industrial case study, we extracted for Chapter 6 a mini-PABX. This
mini-PABX provides the two-party voice calls and the enquiry feature of
the ITT 5400 BCS. The specification of the mini-PABX is based on an
object-oriented design method. The resulting specification is highly
modular and adaptable and therefore more readable.

An explicit error detection and error handling mechanism for an
algebraic specification language is described in Chapter 7. An elegant
notation, directly supporting this error handling method, is introduced in a
many-sorted initial algebra framework. Firstly, a safety function is
provided for every sort. This function characterizes each object as being
safe or unsafe. Secondly, axioms may contain markers that indicate to
which kind of objects the axioms are applicable. The proposed notation is a
trade-off between readability and capability to handle a large class of error
situations. A major point is that the presented description of error
handling promotes a two-step design method of algebraic specifications. In
a first step the specification is given with error detection only, in a second
step error handling is superimposed.

12 Introduction Chap. 1

Chapter 8 treats a top-down implementation method for (semi-)
constructive specifications of data types, called abstract implementations.
First, a high level specification of the data type is produced in which
abstraction is made from all irrelevant details, only the relevant properties
are described. Next, an implementation for the specification can be
constructed using specifications of other data types. In turn these
specifications can be provided with implementations, and so on. If (semi-)
constructive specifications are used, each level can be tested (rapid
prototyping) before it is implemented. Furthermore, each level can be
verified to be correct before it is implemented.

Appendix A contains the complete ECF syntax of the presented
specification language. An example of rapid prototyping, concerning the
specification of the mini-PABX of Chapter 6, can be found in Appendix B.
Finally, an index of technical terms and a bibliography are given.

Most chapters conclude with a survey of the literature. A lot of
articles providing further information on underlying mathematical
theories, proofs and examples, are referred to. An exhaustive bibliography
on algebraic software specifications can be found in [Klaeren85,
Schobbens89].

1.8 Historical Remarks on Algebraic
Specifications

The pioneers of algebraic specifications are Zilles [Zilles74], Guttag
[Guttag75] and the ADJ group [Goguen74] consisting of Goguen, Thatcher,
Wagner and Wright. They all considered a software module representing
an ADT as a many-sorted algebra. The basic argument for the algebraic
approach is that such a software module has exactly the same structure as
an algebra: the various sorts of data involved form sets and the operations
of interest are functions among these sets [Meseguer85al.

During the last years, many different algebraic models have been
proposed. The ADJ group [Goguen78] presented the theory of the (many-
sorted) initial algebras. Final algebra semantics were discussed, e.g., in
[Wand79]. The idea of behavioural equivalence was introduced by
[Giarratana76]. The Munich CIP-group [Partsch78, CIP85] took the class
of all algebras fitting to a given specification as its semantics. The central
idea of Sannella and Tarlecki [Sannella85b] is based on the fact that much
work on algebraic specifications can be done independently of the
particular logical system on which the specification formalism is based.

Sec. 1.8 Historical Remarks on Algebraic Specifications 13

The first specification language based on algebraic specifications was
CLEAR [Burstall77], where, among others, the concept of parameterized
specifications was incorporated. Since then many other algebraic
specification languages have been developed. The most popular ones are
ACT ONE [Ehrig85] and the OBJ family [Goguen79, Goguen83, Goguen84c,
Futatsugi85], both based on many-sorted initial algebras. Algebraic
specification languages may be considered as strongly-typed functional
languages like Hope [Burstall80] or as rewrite rule languages [Huet80].

Topics about algebraic specifications discussed in literature include
correctness, theorem proving, parameterizing, error handling and abstract
implementations. Important work on power and limits of algebraic
specifications is contained in [Majster77, Thatcher78, Bergstra81]. A
combination of initial algebra semantics with Horn clause logic resulted in
Eqlog [Goguen84d] and LPG [Bert86, Declerfayt89).

Algebraic specification techniques and languages have been successfully
applied to the specification of systems ranging from basic data types as
stacks and natural numbers [Guttag78a] to highly sophisticated software
systems as a graphical programming language [Mallgren82] and the Unix
file system [Bidoit87]. Algebraic specification techniques are used in the
wide spectrum language CIP [CIP85], which allows the derivation of
correct software from formal requirements via design specifications down
to a machine-oriented level using jumps and pointers. Another wide
spectrum language that has an algebraic kernel is Larch [Guttag85]. At the
moment, many researchers all over the world are involved in research in
the field of algebraic specifications. Many Esprit Projects, e.g., Gipe and
Meteor [Bergstra87], are covering topics related to algebraic specifications.

More historical information about algebraic specifications can be found
in [Kutzler83, Ehrig85, Futatsugi85].

2. Abstract Data Types as Initial
Algebras

"Use theory to provide insight, use common sense and intuition
where it is suitable, but fall back on the formal theory

for support when difficulties and complexities arise."

David Gries

Because software is structured around data rather than around services of
a system, abstract data types (ADTs) play a central role in the search for
an appropriate structure of modularity during the design phase of the
software life cycle. Intuitively speaking, an ADT is characterized by a set
of data structures together with a number of services (functions) available
on these data structures. To deal with ADTs in a rigorous way, we first
model ADTs by means of algebras. Many algebraic models can be chosen
as underlying mathematical foundation. In this book, the initial model is
used. It is one of the most widespread models in literature. Other models
will be briefly discussed in Section 2.19. As an algebra may define several
abstract data types (called sorts), the term many-sorted initial algebra is
used. A description (notation) of an algebra, e.g., of a many-sorted initial
algebra, is called an algebraic specification.

In this chapter a clear distinction is made between abstract elements, i.e.
elements of many-sorted initial algebras, and concrete notations, i.e.
elements of algebraic specifications. For this purpose, cloudlets are used to
mark abstract elements. Such a distinction may seem to be a bit tedious,
but from our didactic experience we have learned that it avoids a lot of
confusion and that without such a distinction many students are not able
to express themselves clearly during discussion sessions on algebraic
specifications.

The main reason why we are so interested in modelling ADTs by
mathematical objects (in our case many-sorted initial algebras) is that we
can profit from rigorous reasoning as defined for these objects. Rigorous
reasoning on algebraic specifications is based on two important techniques
called egquational reasoning and induction. Both techniques enable the
designer to derive theorems from his algebraic specification. These
theorems then represent properties of the algebraic specification and of the
software system described by it. The fact that such a theorem has been
derived implies that the property it represents has been proved to be true.

Theattentive reader maynotice that at this point no mention is made of
constructivity (see Chapter 4) in algebraic specifications. The reason why
we do so is that a non-constructive specification is often more natural and

Sec. 2.0 15

is of a higher level of abstraction than a constructive one. Such a non-
constructive specification can then be considered as a first step in the
specification phase, from which a constructive version can be derived in a
second step.

Due to the mathematical foundation of the chosen model, namely
many-sorted initial algebras, designers are able to give well-defined and
implementation-independent meanings to ADTs. Due to this mathematical
framework, algebraic specifications can be made accurate and
unambiguous. To make the reader familiar with accuracy and
unambiguity aspects of algebraic specifications, clear definitions of
concepts and an appropriate terminology for these concepts are introduced
in this chapter. Our intention is not to go into all the details of the
mathematical machinery. The concepts are described informally and
illustrated by many examples. No proofs are included in the text, but
many references to literature are given in a systematic way, where a more
mathematical treatment on the subject can be found.

2.1 Many-Sorted Algebra, Signature and
Graphical Notation

A many-sorted algebra is an abstract structure consisting of a family of
sets of objects and a number of functions whose arguments and results
belong to these sets.

The structure of stacks of natural numbers is a simple example: the
structure consists of the set of stacks, the set of natural numbers, the set
of booleans, and the functions push, pop, top, isnewstack and succ.

In order to enable communication, a suitable notation for an algebra is
required. Such a notation is called a signature. A signature introduces
names for the sets of objects of the algebra. These names are called the
sorts or types of the corresponding objects. Objects and functions of the
algebra too can be given a name by the signature. Such named objects and
named functions are respectively called nullary and nonnullary operations.

As an example, Fig. 2/1 shows a signature denoting the many-sorted
algebra of stacks of natural numbers. A stack is a storage device where
items are stored by the operation push. We only have direct access to the
topmost (i.e. last stored) item, by means of the operation top. Access to
lower items is only possible by first removing from the top one by one all
items above the item to be accessed. Removing the item on top of the stack
is done by the operation pop. This access mode is expressed by the
principle last_in - first out, which means that items stored last must be

16 Abstract Data Types as Initial Algebras Chap. 2

removed first. This access mode is very common in computer science. It is
used, e.g., in the evaluation of expressions.

sorts Stack; Nat; Bool;
operations
true, false: -> Bool;
zero: -> Nat;
succ: Nat -> Nat;
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;

Fig. 2/1

The sort names of the sets of objects follow the keyword sorts in the
signature; their order is irrelevant. After the keyword operations follow
the syntactic definitions of the operations in an arbitrary order. The
syntactic definition of a nullary operation consists of its operation name
and its rank, i.e. the sort of the nullary operation. The syntactic definition
of a nonnullary operation consists of its operation name together with its
rank, i.e. the sort names of its domain and range. Remember that nullary
operations denote objects, whereas nonnullary operations denote functions
in the many-sorted algebra.

In the example of Fig. 2/1 the sets of objects are called Stack, Nat and
Bool. The names true and false denote objects of the set Bool, zero denotes
an object of the set Nat and succ denotes a function with rank Nat -> Nat,
meaning that the denoted function has a natural number as argument and
yields a natural number as result. Furthermore, newstack denotes an
object of the set Stack, push is a function with rank Stack * Nat -> Stack
and isnewstack is a function with rank Stack -> Bool. Finally, the
domain and range of pop are Stack. So is the domain of top, but its range
is the set of natural numbers.

The relationship between signature and algebra can be illustrated by
means of a diagram. As an example, the signature of Fig. 2/1 denotes the
algebra of stacks of natural numbers as shown in Fig. 2/2. This
relationship is indicated by the denotation function 8.

The left part of the diagram consists of names within the signature,
whereas the right part contains an algebra, whose elements (objects and
functions) form the abstract world. An abstract element is represented by
a cloudlet containing a name (or names) that is one possible representation
of the element, e.g., . Cloudlets are used to indicate that we deal

Sec. 2.1 Many-Sorted Algebra, Signature and Graphical Notation 17

)
Nat
b}
zero
)
succ
8
top
)
push
)
pop
newstack 8 ‘newstack’ ==
)
Stack
) -
isnewstack By
)
true “isnewstack(newstack) = ...
8 -
- @
false 8
Fig.2/2

with abstract elements, which strictly speaking cannot be represented. The
sets of objects are represented by ovals. One(or more)-tailed arrows
represent functions.

Notice that, in Fig. 2/2, we have given only one of the many possible
definitions of the denotation function to map the given signature on the
algebra of stacks of natural numbers. It would be equally possible for true
to denote é;l\s;'\). Furthermore, it would be equally possible to map the

same signau?fé\;n the algebra of queues of natural numbers or lists of
natural numbers.

18 Abstract Data Types as Initial Algebras Chap. 2

There is no one-to-one correspondence between signatures and algebras.
Clearly, many signatures can denote one same algebra and one signature
can denote many algebras. As an example, consider the simple signature of
Fig. 2/3 that denotes the algebra consisting of the set of natural numbers
and the successor function, see Fig. 2/4.

sort Nat;
operations
zero: -> Nat;
succ: Nat -> Nat;

Fig.2/3
)
Nat
8
succ
)
zero
Fig. 2/4

This algebra can also be denoted by the signature of Fig. 2/5, as
illustrated by the diagram of Fig. 2/6.

sort N;

operations
start: -> N;
next: N -> N;

Fig. 2/5

Sec. 2.1 Many-Sorted Algebra, Signature and Graphical Notation 19

next

start

Fig. 2/6

The signature of Fig. 2/5 can also denote the algebra consisting of a
singleton and the identity function, see Fig. 2/7.

)
N
8
next ——— ™
)
start
elem
Fig. 2/7

The signature of Fig. 2/5 can also denote the algebra consisting of the
set of integers and the successor function, see Fig. 2/8.

Because each signature can denote many different algebras in many
different ways, we will develop a mathematical framework that enables us
to associate a unique algebra with each signature; in fact it will only be
unique up.to an isomorphism.

20 Abstract Data Types as Initial Algebras Chap. 2

N T

: L2
(o) =

- o

Fig. 2/8

2.2 Homomorphism and Isomorphism

Consider two algebras A and B denoted by the same signature that has S,
S;. ... and S, as sorts. A homomorphism from A to B with respect to the
given signature is a family of mappings { fy, f,, ..., f, } in which f; is a
mapping from the set §,.S; of objects of sort S; in algebra A onto the set
85-S; of objects of sort S; in algebra B, so that the behaviour of the
operations is preserved, or more formally

1. for each nullary operation name s;, with s; declared as s;: -> Si, in
the signature:

fij(SA.Si) = 8B'Si
2. and for each nonnullary operation name s;, with s; declared as Si S, *
Si, ¥...*§;, -> S;, in the signature, and for all objects @ , @

and E.tk) that respectively belong to the sets 8,.S;, 8,.5;,, ... and
6,.5;:
APk

£,((8,5) €1). &2) . - ()) =
(8gsi) (£, (1)) £, (22D, o £, (I

An isomorphism is a bijective homomorphism (i.e. a homomorphism so
that each fj is bijective).

Sec. 2.2 Homomorphism and Isomorphism 21

As an example consider the signature of Fig. 2/3 and two algebras NAT
and MOD2. NAT consists of the set of natural numbers and the successor
function, see Fig. 2/4. MOD2 consists of the set of numbers modulo 2 and
the addition-modulo-2 function denoted by add,, see Fig. 2/9.

)
Nat
8 o
succ l
8
zere 0=-add,(1)
Fig. 2/9

Consider the following mapping f from NAT onto MOD2:
£100.D.5). .1 > (().(T) wint(Ga))-(0)
and £(@)= @

{f} is an homomorphism, see Fig. 2/10, because
o f(8 q-zero) = f(@)=10J)= &y opy-zero

o £ (Byypsuce) ((30))) = £ (2ne1)) = (1) -

2d;) ((8)) = (8yopysuce) (£ ({22)))
of((SNAT.succ)())=f(n+2)=@=

£2dd) (D)) = (Byopysuce) (£ (Zar1)))

Notice that no homomorphism exists from MOD2 to NAT.

22 Abstract Data Types as Initial Algebras Chap. 2

Nat

succ

zero

Nat

succ

Zero

Fig. 2/10

We will now give an example of an isomorphism. Consider the
signature of Fig. 2/3, denoting the algebra that consists of the set of Arabic
numerals and the successor function. The set of binary numerals and the
binary successor function form another algebra denoted by the same
signature. A unique isomorphism between these two algebras exists, see
Fig. 2/11.

Sec. 2.2 Homomorphism and Isomorphism 23

Nat

suce

Zero

8BINA.RY

Nat

8B!NARY
-
succ

8BINARY

zero

Fig. 2/11

2.3 Variable-Free Termlanguage

Consider a signature with sort names S;, S,, ... and Sp,, and with a number
of operation names, each with a given rank. This signature defines a
language, called variable-free termlanguage, in the following recursive way:

e Each nullary operation name s;. with s; declared as s;: -> Sij in the
signature, belongs to the language. Its sort is §;;.

e For each nonnullary operation name s;, with s; declared as s;: §;, * §;, *
XS, > Sij in the signature, we have that if ty, t;, ... and t; belong to
the language and their sorts are respectively §;, §;,, ... and §; , then
si(t1, t2,t) is also an element of the language. Its sort is S;.

24 Abstract Data Types as Initial Algebras Chap. 2

¢ Every element of the language must be constructed in a finite number
of steps using the previous two rules.

The elements of a variable-free termlanguage are called variable-free
terms or constant terms. The variable-free termlanguage defined by the
signature of Fig. 2/1, contains:

zero

succ(zero)

top(push(push(newstack, succ(zero)), zero))
isnewstack(pop(push(newstack, zero)))
newstack

push(newstack, zero)

pop(push(newstack, succ(succ(zero))))

The first three variable-free terms are of sort Nat, the fourth has Bool, and
the others have Stack as sort.

There is the following relationship between the variable-free
termlanguage of a signature and an algebra denoted by the signature:

e Each nullary operation name s; denotes an object. If the sort of s; is S,
the corresponding object belongs to the set 8.Sij. As an example,
newstack denotes ¢ ‘newstack’), which belongs to the set 8.Stack.

e Each variable-free term s;(t;, t3, ..., ty) denotes the result of applying
the function 8.s; to the objects 8.t;, 8.t5, ... and 8.t,. If the sort of s;(t;,
t2, .., tg) is Si,: the denoted object belongs to the set 8.S;. As an

example, push(newstack, zero) denotes | "push(newstack, zero) }, which
belongs to the set §.Stack.

Variable-free terms may be added to the left parts of the diagrams.

24 Word Algebra

A particularly interesting algebra denoted by a signature is its word
algebra. A word algebra is an algebra in which the objects of the set 8.S;
are the variable-free or constant terms of sort §;, considered as character
strings, and in which the functions are string combinators that build larger
strings from smaller ones; furthermore every variable-free term denotes
the object derived from itself. Given the signature of Fig. 2/1, its word
algebra is shown in Fig. 2/12.

Sec. 2.4 Word Algebra 25

Nat —

Zero

) succ
succ Lo
suce(zero) 8 m

pop(push(newstack, zero)) 5 / ‘pop(push(newstack, zero))’

$
newstack \BR_—
]

Stack
8 oo
isnewstack isnewstack
2 »
true

isnewstack(newstaclst) “isnewstack(newstack)’

Bool -
false 8

Fig. 2/12

Notice that a variable-free termlanguage, although it has been derived
from a signature, which is a syntactic notation, defines an algebra that
belongs to the abstract world.

We could write the variable-free terms in postfix notation or represent
them by trees instead of strings. All these word algebras are isomorphic.
When we refer to the word algebra, we actually mean any of these
isomorphic algebras.

26 Abstract Data Types as Initial Algebras Chap. 2

2.5 Signature, Variety and Termalgebra

The variety over a signature is the set of all possible algebras denoted by
that given signature.

An algebra denoted by a signature is a termalgebra of the signature if
each object of the algebra can be denoted by a variable-free term. An
example of a termalgebra of the signature of Fig. 2/1 is its word algebra,
which is shown in Fig. 2/12.

Let us now use the signature of Fig. 2/3 to denote the algebra of the
integers, as shown in Fig. 2/13.

Nat

succ — ’ succ

Zero

succ(zero)

succ(suce(zero))

Fig. 2/13

Notice that the negative integers cannot be denoted by a variable-free
term of the signature. Therefore, the denoted algebra is not a termalgebra
of the given signature.

2.6 Signature and Initial Algebra

A category of algebras over a signature is a set of algebras denoted by the
signature, together with a number of homomorphisms between these
algebras including the identity homomorphisms.

An algebra I is initial in a category C of algebras over a signature, if and
only if I belongs to C and for each algebra A in C, a unique homomorphism
in C from I to A does exist. It can easily be shown that if I and I" are both
initial algebras in the same category, they are isomorphic [Goguen78,
Ehrig85]. When we refer to the initial algebra, we actually mean any of
these isomorphic algebras.

Sec. 2.6 Signature and Initial Algebra 27

Convention: whenever we use the term category over a signature
without specifying which category is meant, we mean the variety over the
signature together with all possible homomorphisms.

The initial algebra of the category over a signature always exists
[Goguen78, Meseguer85a, Ehrig85]. Indeed, the word algebra of a signature
is the initial algebra of its category.

2.7 Abstract Data Types Defined by a Signature

The abstract data types defined by a signature are the sets of objects 9.S;
together with the functions 8.s; defined on these sets, of the initial algebra
of the category over the signature. The data types are called abstract
because they are defined up to an isomorphism. Because of the
mathematical notion of algebras, abstraction is made from data
representations and only fundamental properties of objects and functions
are considered. Concrete representations and implementations of objects
and functions are irrelevant at this level of specification.

Until now, we have developed a mathematical framework in which
each variable-free term denotes a different object of the abstract data
types. This framework, as explained so far, is not powerful enough for
most abstract data types currently used in software systems. Therefore,
we will introduce the notion of axiom so that different variable-free terms
can denote the same object.

2.8 Termlanguage

Consider the signature consisting of the sort names Sy, S5, ... and Sy, and a
number of operation names each with a given rank. Furthermore, for each
sort S; a set of unique names { xj,, Xj,, ..., X;, }. called variables of sort S;, is

given. The termlanguage of the signature with respect to the sets of
variables is defined in the following recursive way:

e Each variable x;, of sort S; belongs to the language.

e Each nullary operation name s;, with s; declared as s;: -> Si, in the
signature, belongs to the language. Its sort is §;;.

o For each nonnullary operation name s;, with s; declared as s;: §;; * §;,
*S -> Si, in the signature, if t;, t5, ... and t; belong to the language
and their sorts are respectively S; . S;,. ... and S;,, then s;(t1, tz, ...ty)
is also an element of the language. Its sort is S;;.

ik *

28 Abstract Data Types as Initial Algebras Chap. 2

e Every element of the language must be constructed in a finite number
of steps using the previous three rules.

The elements of a termlanguage are called terms. The termlanguage
defined by the signature of Fig. 2/1, with respect to the set of variables
{n;} of sort Nat, the set of variables { stack,, stack, } of sort Stack and the
empty set of variables of sort Bool contains the following terms:

zero

succ(suce(n;))

top(push(stacky, n;))

push(pop(stack;), zero)

pop(push(stack;, top(push(stackz,n;))))
isnewstack(push(stackp, n;))

The first three terms are of sort Nat, the next two have Stack and the last
term has Bool as sort.

2.9 Substitution and Ground Substitution

Assume that a signature together with sets of variables are given. A
substitution o is a family of mappings { 01, 05, ..., 0, } in wWhich ojisa
mapping from the set of variables of sort S; onto the set of terms of sort §;.
A ground substitution is a substitution in which each variable is mapped
onto a variable-free term.

Given a signature, sets of variables and a corresponding substitution,
application of the substitution to an arbitrary term results in a new term
obtained by simultaneously replacing all the variables by the terms as
specified by the substitution.

Consider the signature of Fig. 2/1, the sets of variables of sort Nat,
Stack and Bool, respectively { n; }, { stack; } and { }, and consider the
substitution { { (n;, zero) }, { (stack;, push(newstack,n;)) },{ } }. By
applying the substitution, the term top(stack;) is transformed into the
term top(push(newstack, n;)), and the term pop(push(stack;, n;)) is
transformed into the term pop(push(push(newstack, n;), zero)).

Sec. 2.10 Assignment 29

2.10 Assignment

Given a signature denoting an algebra and given a set of variables for each
sort S;. An assignment is a family (set) of mappings { 61, 9,, ..., 0, } in
which 6; is a mapping from the set of variables of sort S; onto the set 8.S;.
An assignment for the signature of Fig. 2/1 denoting the algebra of stacks
of natural numbers as shown in Fig. 2/2, and for { n; }. { stack; } and { }

as_sets of variables of the sorts Nat, Stack and Bool, may be { { (n;,
) }, { (stack;, { push(newstack, zero)')) }, { } }.
An assignment may be interpreted as an extension of the denotation

function for variables. As a result, the denotation function is then defined
over terms. Given a signature denoting an algebra and given a set of
variables for each sort S; together with an assignment, terms denote objects
in the following way, see Fig. 2/14:

e Each nullary operation name s; of sort S;; denotes the object d.s; of 8.Sij,
e.g., newstack denotes | ‘newstack’) in 8.Stack.

e Each variable of sort S; denotes the object of 3.S; as specified by the
assignment, e.g., n; denotes m of 8.Nat.

e Each term s;(t;, tp, ..., ty) of sort S;; denotes the result of applying the

function 8.s; on the objects 8.t;, 8.t5, ... and 8.t,. The result belongs to
8.Sij, e.g., push(newstack, n;) denotes { "push(newstack, zero)’) of
8.Stack.

Every ground substitution implicitly defines an assignment. The
ground substitution

{ { (n;. zero) }, { (stack;, push(newstack, zero)) },{ } }

implicitly defines the assignment given above.

30 Abstract Data Types as Initial Algebras Chap. 2

)
Nat
)
Zero
"top(push(newstack, zero))’ = ...
; =)
succ
&
n
)
top
b}
push(newstack, n;)
b
push
stacky 8
. S
pPop
newstack s ‘newstack’ ==
8
Stack
8 -
isnewstack ¢ jsnewstack
)
true
)
- @
false 8
Fig. 2/14

2.11 Axioms and Presentation

A presentation is a signature extended by means of axioms. An axiom
consists of a number of sets of variables (at most one set of variables for
each sort of the signature) and two terms of the same sort belonging to the
termlanguage of the signature with respect to the sets of variables. In most
presentations all axioms have the same sets of variables because the

Sec. 2.11 Axioms and Presentation 31

variables need not occur in the constituent terms of every axiom. An
example of a presentation is given in Fig. 2/15.

sorts Stack; Nat; Bool;
operations
true, false: -> Bool;
zero: -> Nat;
succ: Nat -> Nat;
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;
declare s: Stack; n: Nat;

axioms
isnewstack(newstack) == true; a1 -
isnewstack(push(s, n)) == false; --2--
pop(newstack) == newstack; —3-
pop(push(s,n)) ==s; 4
top(newstack) == zero; 5
top(push(s,n)) ==n; —6 —
Fig. 2/15

In Fig. 2/15 the variables are common to all axioms. After the
keyword declare the variables are listed with their sort. The axioms
follow the keyword axioms. Neither the order of the variables nor the
order of the axioms is relevant. If the axioms have distinct sets of
variables, a declaration part must be given for each axiom. In order to
avoid confusion, a variable that is declared in several declaration parts,
will always be declared of the same sort.

It is obvious that error treatment is a very important issue from a
software engineering viewpoint. A thorough treatment of error detection
and error handling will be given in Chapter 7. Meanwhile the exceptional
situations are treated in a naive way. In our Stack example, the top of an
empty stack yields zero and the pop of an empty stack gives the empty
stack back.

An algebra is denoted by a presentation if it is denoted by the signature
of the presentation. An algebra denoted by a presentation satisfies the
axioms of its presentation if for each axiom the two constituent terms
denote the same object of the algebra for each possible assignment.

32 Abstract Data Types as Initial Algebras Chap. 2

2.12 Presentation, Variety and Termalgebra

The variety over a given presentation is the set of all possible algebras
denoted by the presentation and satisfying the axioms of the presentation.
An example of an algebra belonging to the variety over the presentation of
Fig. 2/15 was given in Fig. 2/2.

A termalgebra of a presentation is an algebra denoted by the
presentation in which each object can be denoted by a variable-free term of
the presentation.

2.13 Equational Reasoning

Equational reasoning is one of the techniques that enable the software
designer to use so-called rigorous mathematical reasoning (another
technique is induction, see Section 2.17). Properties of the specification of
software can be proved to be true, even before the implementation has been
started. Such proofs of properties are very similar to proofs of theorems in
mathematics. Proofs about specifications of programs serve two purposes.
They constitute the program documentation by excellence and they
enhance software correctness and reliability.

Given a presentation, equational reasoning is the process of deriving new
axioms by applying the following rules [Goguen81, Meseguer85a,
Meseguer85b]:

o Reflexivity: if t is a term of the presentation,
declare <declaration part>

axiom

is derivable by reflexivity if the variables used in the term t are listed
in the declaration part.
o Symmetry: if the axiom
declare <declaration part>
axiom
t; == 1,;

is given or derivable, then

Sec. 2.13 Equational Reasoning 33

declare <declaration part>
axiom
tr == 13

is derivable.

e Transitivity: if the axioms

declare <declaration part>

axioms
t =12

are given or derivable, then

declare <declaration part>
axiom

is derivable.

o Substitutivity: if the axioms

declare x: §;; <declaration part 1>
axiom

t1 == 13;
declare <declaration part 2>
axiom

t3 == 14,

are given or derivable, with t3 and t4 being of sort §;, then

declare <declaration part 1> <declaration part 2>
axiom
ts == 1¢.

is derivable, with ts being the result of applying the substitution
{{(x,t3) } } to t; and with ts being the result of applying the
substitution { { (x,t4)} } to t5.

e Abstraction: if the axiom
declare <declaration part>

axiom

34 Abstract Data Types as Initial Algebras Chap. 2

is given or derivable, x is a variable of sort S; and x is not declared in
the declaration part, then

declare x: §;; <declaration part>
axiom
ty == 1,

is derivable.

e Concretion: if the axiom

declare x: §;; <declaration part>
axiom
t1 == ta;

is given or derivable, the set of variable-free terms of sort §; is not
empty and x does not appear in t; nor t,, then

declare <declaration part>
axiom
t1 == 1y,

is derivable.

Given a presentation, deriving new axioms by equational reasoning
always yields axioms that are satisfied by all algebras of the variety over
the presentation [Meseguer85a, Ehrig85]. A second important property is
that every axiom satisfied by all algebras of the variety over the
presentation can be deduced using these rules [Meseguer85a, Ehrig85].

Example of the Stacks

A derivable axiom is

declare s: Stack; n: Nat;
axiom
push('s, n) == push(s, top(push(s,n))); -0 --

To prove this, we first apply reflexivity obtaining
declare s: Stack; n: Nat;

axiom
push(s, n) == push(s,n); —1 -

Sec. 2.13 Equational Reasoning 35

The symmetry property transforms axiom 6 of Fig. 2/15 into

declare s: Stack; n: Nat;
axiom
== top(push(s,n)); —7

Substitutivity for the variable n of axiom 1’ by axiom 2’ yields axiom 0".

Notice that the axioms of the presentation define a family of equality
relations between the variable-free terms. Each equality relation defines
the equality between the variable-free or constant terms of a given sort:
two variable-free terms are equal if and only if they can be the constituent
terms of an axiom with empty sets of variables derived by equational
reasoning. These equality relations are equivalence relations, i.e. relations
that are reflexive, symmetric and transitive. E.g., the equality relation for
sort Stack defined by the axioms of Fig. 2/15 implies that the following
variable-free terms are equal:

newstack

pop(newstack)

pop(push(newstack, zero))

pop(push(newstack, top(newstack)))

pop(pop(push(push(newstack, succ(zero)), zero)))

The equality relations defined by the axioms of a presentation are even
congruence relations: if s; has been declared as s;: §;, *§;, * ... *§;, -> Si, in
the presentation and if t; == u;, t; == Uz, ... and ty == uy with t; and u,,
t, and uy, ... and ty and uy variable-free terms of sorts §;;, S;,. ... and S
respectively, then s;(t1, t, ..., t) == 5;{(uj, Uz, ..., ug).

2.14 Presentation and Initial Algebra

A category of algebras over a given presentation is a set of algebras denoted
by the presentation, together with a number of homomorphisms between
these algebras including the identity homomorphisms. A frequently used
category is the variety over a presentation, together with all possible
homomorphisms between the algebras of this variety.

An algebra 1 is initial in a category C of algebras over a presentation, if
and only if I belongs to C and for each algebra A in C, a unique
homomorphism from I to A does exist. If the initial algebra exists, it is
uniquely determined up to an isomorphism [Goguen78, Ehrig85].

36 Abstract Data Types as Initial Algebras Chap. 2

Convention: whenever we use the term category over a presentation
without specifying which category is meant, we mean the variety over the
presentation together with all possible homomorphisms.

How can the initial algebra of the category over a presentation be
found? Consider the word algebra of the signature of a given presentation
(the word algebra of the presentation for short) together with the equality
relations defined by its axioms (see previous section). The equality
relations are congruence relations that partition each set 8.S; (of variable-
free terms of sort S;) into a number of congruence classes of sort S;. The
classes of sort S; are the objects of the set 8.S; in a new algebra, called
guotient algebra of the presentation. Each function of the given word
algebra corresponds to a function in the quotient algebra. If the function
d.s;, with s; declared as s;: S, * S, * ... *§;, -> Sj; in the presentation, maps
the arguments 8.t;, 8.t5, ... and 8.ty to 8.5(t1, tz, ..., tx) in the word
algebra with t;, t3, ... and ty being variable-free terms of sorts §;,, S;,, ...
and §; respectively, then the corresponding function maps the arguments
Ci. G, ... and C¢ to C with Cq, C,, ..., C¢ and C being the congruence
classes to which 8.t;, 8.t, ..., 8.ty and &.5{(t;, t,, ..., ty) respectively
belong.

The initial algebra of the category over a presentation is the quotient
algebra of the word algebra of the presentation for the equality relations
defined by the axioms [Goguen78, Ehrig85].

We will illustrate this algorithm by the example of Fig. 2/15. The
word algebra was shown in Fig. 2/12. This word algebra does not belong
to the variety over the given presentation (Fig. 2/15) because none of the
axioms is satisfied. The equality relations defined by the axioms divide
the sets of objects into classes as shown in Fig. 2/16.

Sec. 2.14 Presentation and Initial Algebra 37

(ouso)

“top(push(newstack, zero))’

isnewstack

Fig. 2/16

If the classes of sort S; are considered as the objects of the set 8.S; upon
which corresponding functions are defined, we obtain the quotient algebra
of the word algebra for the equality relations defined by the axioms, see
Fig. 2/2. This quotient algebra belongs to the variety over the
presentation, because it satisfies the axioms. It can be proved that it is the
initial algebra of the variety [Goguen78, Ehrig85].

38 Abstract Data Types as Initial Algebras Chap. 2

2.15 Abstract Data Types Defined by a
Presentation

The abstract data types defined by a presentation are the sets of objects 3.S;
together with the functions 3.s; defined on these sets, of the initial algebra
of the category over the presentation. The data types are called abstract
because they are defined up to an isomorphism. Because of the
mathematical notion of algebras, abstraction is made from data
representations and only fundamental properties of objects and functions
are taken into account. If we consider, e.g., the abstract data type of the
stacks of natural numbers as defined by the presentation of Fig. 2/15, it is
irrelevant whether the stacks are represented by lists, arrays or anything
else, neither is it relevant which algorithm is used to calculate the
functions.

2.16 Examples

The Abstract Data Type Orientation

Fig. 2/17 shows two presentations defining the same abstract data type
Orientation. The abstract data type consists of the set 8.Orientation
together with the functions 8.turnleft, 8.turnright and 8.opposite. The set
8.0Orientation contains four objects, i.e. 8.north, 8.east, 8.south and 8.west.

sort Orientation;
operations

north, east, south, west: -> Orientation;

turnleft, turnright, opposite: Orientation -> Orientation;
declare or: Orientation;

axioms
turnleft(north) == west; turnleft(east) == north;
turnleft(south) == east; turnleft(west) == south;

turnright(turnleft(or)) == or;
turnleft(turnleft(or)) == opposite(or);

sort Orientation;
operations
north, east, south, west: -> Orientation;
turnleft, turnright, opposite: Orientation -> Orientation;

Sec. 2.16 Examples 39

axioms

turnleft(north) == west; turnleft(east) == north;

turnleft(south) == east; turnleft(west) == south;

turnright(north) == east; turnright(east) == south;

turnright(south) == west; turnright(west) == north;

opposite(north) == south; opposite(east) == west;

opposite(south) == north; opposite(west) == east;
Fig. 2/17

Each of the axioms of one presentation is derivable from the axioms of
the other one using equational reasoning and induction (see Section 2.17).
Notice that the first presentation is shorter but the second one is more
constructive, i.e. it is easier to derive an implementation (program) from it.
Constructivity will be treated in Chapter 4.

Unbounded Arrays of Boolean Values

In Fig. 2/18 a presentation is given defining the abstract data types of the
boolean values, the natural numbers and the unbounded arrays of boolean
values with natural numbers as indices.

sorts Array; Nat; Bool;
operations
true, false: -> Bool;
ifthenelse: Bool * Bool * Bool -> Bool;

zero: -> Nat;
succ: Nat -> Nat;
equal: Nat * Nat -> Bool;

empty: -> Array;

assign: Array * Bool * Nat -> Array;

read: Array * Nat -> Bool; .
declare

b, by, by: Bool; n, ny, ny: Nat; ar: Array;
axioms

ifthenelse(true, by, by) == by;

ifthenelse(false, by, by) == by;

equal(suce(ny), suce{ np)) == equal(ny, np J;
equal(zero, succ(n)) == false;

equal(suce(n), zero) == false;

equal(zero, zero) == true;

read(empty, n) == true;
read(assign(ar, b, ny), np) ==
ifthenelse(equal(ny, ny), b, read(ar, nz));

Fig. 2/18

40 Abstract Data Types as Initial Algebras Chap. 2

The abstract data types defined by the above presentation consist of the
sets 8.Bool, 8.Nat and §.Array, and the functions &.ifthenelse, 8.succ,
8.equal, 8.assign and 8.read. Notice that if the operations had other names,
e.g., true was called waar and false was called onwaar, we would still have
the same abstract data types because an abstract data type is defined up to
an isomorphism. From the axioms defined for the operation read we can
deduce that a newly created unbounded array is initialized with true. So,
reading a value on a given index of an unbounded array will always yield
the value true, if there has never been an assignment of a value on that
index. In Chapter 3, where we deal with (algebraic specification) language
aspects, we will introduce language-defined operations for ifthenelse and
equal.

The Farmer, the Wolf, the Goat and the Cabbage

An example coming from the field of artificial intelligence is the problem
of the farmer, the wolf, the goat and the cabbage crossing a river. A
farmer, a wolf, a goat and a cabbage want to cross a river but they can
only dispose of one boat. The farmer can cross the river but he can only
carry one passenger at most. When the farmer is absent, the wolf may eat
the goat or the goat may eat the cabbage. So the problem of how to cross
the river safely arises.

A specification is given in Fig. 2/19. This specification describes a
solution (the what) without giving an implementation (algorithm) to find
this solution (the how).

The wolf, the goat and the cabbage form the objects of sort Thing. The
farmer and the boat are not explicitly defined in the specification since we
assume that crossing the river without the boat is impossible and that the
boat can only move from one bank to the other one if it is navigated by the
farmer. Sequences of moves are modelled by objects of sort MoveSeq. An
example of such an object is cross(transport(start, goat)). This object
can be interpreted as follows: (1) initially all things, the farmer and the
boat are at one of two banks, say bank A; (2) the farmer crosses the river
together with the goat (3) finally, the farmer leaves the goat at bank B
and crosses the river all alone. The situation after the sequence of moves is
as follows: the farmer, the wolf, the cabbage and the boat are at bank A
whereas the goat is at bank B. Clearly, there are an infinite number of
move sequences. Only those move sequences for which the operation
issolution yields true, are a solution of the given problem. The operation
issolution is defined in terms of the operations samebank, otherbank, over,
allover, possible, dangerous, unsafe and safe.

Noticenthatscommentsyarevinserted in the specification. A comment
starts with two adjacent hyphens and extends to the end of the line or two
adjacent hyphens, whatever comes first.

Sec. 2.16 Examples 41

sorts MoveSeq; Thing; Bool;
operations

true, false: -> Bool;

not: Bool -> Bool;

and, or: Bool * Bool -> Bool;
if: Bool * Bool * Bool -> Bool;

wolf, goat, cabbage: -> Thing;
eq: Thing * Thing ~> Bool;
-- equality function for things

start: -> MoveSeq;
-- the farmer, the wolf, the goat, the cabbage and the boat are at the same bank;
-- which of the two banks is irrelevant
cross: MoveSeq -> MoveSeq;
-~ the farmer crosses the river alone
transport: MoveSeq * Thing -> MoveSeq;
-~ the farmer transports either the wolf, the goat or the cabbage

samebank: MoveSeq * Thing -> Bool;
-- samebank indicates whether, after executing a sequence of movements,
-- a Thing is at the same bank of the river as the farmer
otherbank: MoveSeq * Thing -> Bool;
-- the negation of samebank
over: MoveSeq -> Bool;)
-- indicates whether the farmer, after the execution of a sequence of movements,
-- is at the bank he wants to arrive at
allover: MoveSeq -> Bool;
-- indicates whether, after the execution of a sequence of movements, the farmer, the
-- wolf, the goat and the cabbage arrive at the bank the farmer wants them to be at
possible: MoveSeq -> Bool;
-- indicates whether a sequence of movements is possible; the farmer can
-- only transport a thing from a bank if that thing is present at that bank
dangerous: MoveSeq -> Bool;
-- indicates whether the wolf may eat the goat or the goat may eat the
-- cabbage after the execution of a sequence of movements
unsafe: MoveSeq -> Bool;
-- indicates whether the wolf may have eaten the goat or the goat may have eaten
-- the cabbage during or after the execution of a sequence of movements
safe: MoveSeq -> Bool;
-- the negation of unsafe
issolution: MoveSeq -> Bool;
-- indicates whether a sequence of movements is a solution of the given problem

declare b, by, b,: Bool;
th, thy, thy: Thing;
ms: MoveSeq;

axioms
not(true) == false; not(false) == true;
and(true, b) ==b; and(false, b) == false;
or(true, b) ==true; or(false, b) ==1b;
if(true, bl: b2) == bl; if(false, bl: b2) == bz;

eq(wolf, goat) == false; eq(goat, cabbage) == false;

42 Abstract Data Types as Initial Algebras Chap. 2

eq(wolf, cabbage) = false; eq(thy, thy) == eq(thy, th;);
eq(th, th) == true;

samebank(start, th) == true;
samebank(cross(ms), th) == not(samebank(ms, th));
samebank(transport(ms, thy), thy) ==
if(eq(thy, thy),

-- then -- true,

-- else -- not(samebank(ms, thy)));
otherbank(ms, th) == not(samebank(ms, th));
over(start) == false;
over(cross(ms)) == not(over(ms));

over(transport(ms, th)) == not(over(ms));
allover(ms) == and(and(and(
over(ms),

samebank(ms, wolf)),
samebank(ms, goat)),
samebank(ms, cabbage));
possible(start) == true;
possible(cross(ms)) == possible(ms);
possible(transport(ms, th)) == and(
samebank(ms, th),
possible(ms));
dangerous(ms) == ox(
and(
otherbank(ms, wolf),
otherbank(ms, goat)),
and(
otherbank(ms, goat),
otherbank(ms, cabbage)));
unsafe(start) == dangerous(start);
unsafe(cross(ms)) == or(
dangerous(cross(ms)),
unsafe{ ms));
unsafe(transport(ms, th)) == or(
dangerous(transport(ms, th)),
unsafe(ms));
safe(ms) == not(unsafe(ms));
issolution(ms) == and(and(
possible(ms),
safe(ms)),
allover(ms));

Fig. 2/19

Notice that both the operations and the axioms parts have been divided
into three subparts. There is one subpart for each sort. This kind of
modularity, which is still implicit, will be made explicit later when we
deal with algebraic specification language aspects in Chapter 3.

Sec. 2.17 Induction 43

2.17 Induction

Like equational reasoning, induction is a mathematical technique that can
be used to derive new axioms from a given presentation. Axioms derivable
by equational reasoning are satisfied by every algebra of the variety over
the presentation. Axioms derivable by induction will be satisfied by every
termalgebra of the variety over the given presentation, and consequently
by the initial algebra too. As equational reasoning, induction is a very
important technique to prove theorems of abstract data types.

A mathematical (but rather tedious) definition of induction can be
found in [Boyer79]. The main idea behind induction is that one assumes
instances of the property being proved during its own proof. One of the
hardest problems in discovering an inductive proof is finding an
appropriate induction scheme that is complete and sound.

Example of the Integers

sort Z;

operations
zero: -> Z;
succ: Z-> Z;
pre:Z-> Z;
add:2*Z-> Z;

declare i, j: Z;

axioms
pre(suce(i)) ==1i; 1
succ(pre(i)) =1i; —
add(zero, i) == i; —3-
add(suce(i), j) ==succ(add(i, j)); --4--
add(pre(i), j) == pre(add(i, j)); —5-

Fig. 2/20

The presentation of Fig. 2/20 defines the abstract data type of the
integers including the successor, predecessor and addition functions. An
axiom derivable by induction is the commutativity of the addition:

44 Abstract Data Types as Initial Algebras Chap. 2

declare i, j: Z;
axiom
add(j,i)==add(i, j) -0 -

It is provable by induction over j as well as over i. We will demonstrate it
by induction over j. For each termalgebra of the presentation, each object
can be denoted by a variable-free term consisting of the operation names
zero, succ and pre only. This will be proved by induction, further on.

To prove axiom 0°, we have to prove the induction base

declare i: Z;
axiom
add(zero, i) == add(i, zero); -1 -

and given the induction hypothesis

declare i, j: Z;
axiom
add(j, i) ==add(i, j) —

we have to prove the induction conclusions

declare i, i’ Z;

axioms
add(suce(j'), i) ==add(i, succ(j)): -3 -
add(pre(j), i) ==add(i, pre(i)); 4

If axiom O is written in the form F(j, i), we can use the following
induction scheme:

F(zero, i)
F(i,i)=> F(suce(j). i)
F(j,i)=> F(pre(j), i)

Using axiom 3 of Fig. 2/20, we can rewrite axiom 1’ as:

declare i: Z;
axiom
i == add(i, zero); -—-1.0" --

This axiom can be proved by induction over i. As already mentioned, for
each termalgebra each object can be denoted by a variable-free term
consisting of the operation names zero, succ and pre only.

We have to prove the induction base

Sec. 2.17 Induction 45

axiom
zero == add(zero, zero); -—1.1 --

and given the induction hypothesis

declarei’: Z;
axiom
i == add(i, zero); -—12" -

we have to prove the induction conclusions

declare i’: Z;

axioms
succ(i") == add(succ(i’), zero); -~1.3 -
pre(i) == add(pre(i), zero); —1.4 —-

If axiom 1.0° is denoted as G(i), we can use the following induction
scheme;

G(zero)
G(i')=> G(succ(i’))
G(i")=> G(pre(i))

Axiom 1.1 can be derived from axiom 3 of Fig. 2/20.
Using axiom 4 of Fig. 2/20, axiom 1.3’ can be transformed into

declare i’: Z;
axiom
succ(i’) == succ(add(i’, zero));

Using the induction hypothesis 1.2°, the right-hand side can be transformed
into the left-hand side.
Axiom 1.4" can be transformed using axiom 5 of Fig. 2/20 into

declare i: Z;
axiom
pre(i’) == pre(add(i’, zero));
Using the induction hypothesis 1.2°, the right-hand side can be transformed

into the left-hand side. This proves axiom 1°.
The first induction conclusion:

declare i, j: Z;
axiom
add(succ(j), i) ==add(i, succ(j)); -—3 -

can be transformed into

46 Abstract Data Types as Initial Algebras Chap. 2

declare i, j: Z;
axiom
succ(add(§", i)) ==add(i, succ(§));

by using axiom 4 of Fig. 2/20. Using the induction hypothesis 2, it can be
transformed into

declare i, j: Z;
axiom
succ(add(i, j°)) == add(i, succ(§)); --3.0" -

This axiom can be proved by induction over i. As already mentioned, for
each termalgebra each object can be denoted by a variable-free term
consisting of the operation names zero, succ and pre only.

We have to prove the induction base

declare j: Z;
axiom
“succ(add(zero, j°)) == add(zero, suce(i’)): -—-3.1 -

and given the induction hypothesis

declare i’, j: Z;
axiom
succ(add(i, i’)) == add(i’, suce(j)) —-32 -

we have to prove the induction conclusions

declarei’, j: Z;

axioms
succ(add(suce(i’), §)) == add(succ(i’), succ(j)); -33 -
succ(add(pre(i’), i’)) ==add(pre(i’), succ(i)); -34 -

If axiom 3.0" is denoted as H(i, j*), we can use the following induction
scheme:

H(zero, j)
H(i,j7)=> H(suce(i). j)
H(i,j)=> H(pre(i), j)

Using axiom 3 of Fig. 2/20 the left as well as the right-hand side of 3.1’
can be transformed into

succ(j)

Axiom 3.3" can be transformed into

Sec. 2.17 Induction 47

declare i’, j: Z;
axiom
succ(suce(add(i, i))) == succ(add(i’, succ(j)));

by using axiom 4 of Fig. 2/20. Using the induction hypothesis 3.2" the
left-hand side can be transformed into the right-hand side.
Axiom 3.4" can be transformed into

declare i’, j’: Z;
axiom
succ(pre(add(i’, i’))) == pre(add(i’, succ(i)));

by using the last axiom of Fig. 2/20. Using the induction hypothesis 3.2°,
it can be transformed into

declare i’, j’: Z;
axiom
succ(pre(add(i, j’))) == pre(succ(add(i,)))

which can be proved by using axioms 1 and 2 of Fig. 2/20. This deduction
proves induction conclusion 3.
The proof of induction conclusion 4" is completely analogous to that of 3".
We still have to prove that for each termalgebra of the given
presentation, each object can be denoted by a variable-free term consisting
of the operation names zero, succ and pre only, i.e. the operation names
zero, succ and pre provide us with a system of canonical forms. We will
even prove that each object of such an algebra can be denoted by

1. either the term zero;

2. or a variable-free term consisting of the operation names zero and
succ only; if the variable-free term contains n occurrences of the
operation name succ, it will be written as succ®(zero) withn > 0;

3. or a variable-free term consisting of the operation names zero and pre
only; if the variable-free term contains n occurrences of the operation
name pre, it will be written as pre"(zero) withn > 0.

This property will be written in the form F(x), where x stands for an
arbitrary object of the termalgebra. We use the following induction
scheme:

F(zero) -—a--

F(x')=> F(suce(x)) -—~b--

F(x)=> F(pre(x)) -—c--

F(x')and F(y)=> F(add(x.y)) | --d--

48 Abstract Data Types as Initial Algebras Chap. 2

Case a is trivial. Cases b and ¢ are proved respectively using axioms 2 and
1 of Fig. 2/20. Before proving case d, we first prove some useful lemmas.

declare i: Z;
axiom
add(succ®(zero), i) ==succ®(i); --withn 20 lemma 1

Lemma 1 can be proved by a simple induction over n. The induction
base (n = 0) is identical to axiom 3 of Fig. 2/20. If the induction
hypothesis

declare i: Z;
axiom
add(succ®(zero), i) == succ®(i);

is true, we still have to prove that

declare i: Z;
axiom
add(succ®*(zero), i) == succ®t1(i);

The above axiom can be written as
declare i: Z;
axiom
add(succ(succ®(zero)), i) == suce(succ™(i));
which can be transformed to
declare i: Z;
axiom

succ(add(succ™(zero), i)) == succ(succ® (i));

using axiom 4 of Fig. 2/20. The above axiom can be proved using the
induction hypothesis.

The proof of the following lemma is analogous.
declare i: Z;

axiom
add(pre®(zero), i) == pre®(i); --withn 20 lemma 2

Sec. 2.17 Induction 49

Lemma 3 is

declare i: Z;
axiom
succ®(pre®(i)) ==1i; --withn 20 lemma 3

The induction base (n = 0) is trivial. If the induction hypothesis
declare i: Z;
axiom
succ® (pre” (i)) ==1i;
is true, we have to prove the induction hypothesis
declare i: Z;
axiom
succ® 1 (pre®*1(i)) ==1i;
which can be written as
declare i: Z;
axiom

succ(succ™(pre®(pre(i)))) ==1i;

The above axiom can be proved using the induction hypothesis and axiom 2
of Fig. 2/20.

The proof of lemma 4 is analogous.
declare i: Z;
axiom

pre*(succ®(i))==1i; --withn 20 lemma 4

We still have to prove case d.

F(x')and F(y)=> F(add(x,y')) | --d--

The induction hypothesis expresses that x’ can be written as zero, as
succ®(zero) or as pre”(zero) with n > 0. We consider these three
situations.

1. x’ can be written as zero. The right-hand side of case d becomes
F(add(zero, y').) which can be transformed, using axiom 3 of Fig.

50 Abstract Data Types as Initial Algebras Chap. 2

2/20, to F(y’) which is part of the induction hypothesis.

2. x' can be written as succ”(zero) with n > 0. Applying lemma 1
yields as right-hand side of case d F(succ®(y’)). AsF(y’) is valid,
y' can be written as zero, succ™(zero) or as pre™(zero) with m > O.
If y’ can be written as zero or succ™(zero), F(succ®(y’)) is obvious
valid. If y’ can be written as pre™(zero), we have three possibilities:

n < m: The right-hand side may be written as
F(succ™(pre®(pre™™(zero))))

which can be proved using lemma 3.
n=m: Using lemma 3 we obtain F(zero), which is valid.

n > m: The right-hand side may be written as
F(succ®™(succ™(pre™(zero))))

which can be proved using lemma 3.

3. x’ can be written as pre"(zero). The proof is analogous to that of the
previous situation.

In Chapter 4 constructive specifications will be defined for which a
system of canonical forms (terms built up of constructors only) is
designated by the designer of the specification.

Counter-Example

The variety over the presentation of Fig. 2/20 contains the following
algebra [Huet80], see Fig. 2/21. The set of objects of the algebra is the
union of the set of blue integers @ and the set of red integers ¢

with i standing for an integer. The functions of the algebra are m ,
@ and @ Their meaning is intuitively described as follows

{2 (e = G0
@D (G - (D)

06) (fluc) =Lt Do)
() o)) - (GDe)

Sec. 2.17 Induction 51

b D)
O -
E)-
The nullary operation zero denotes :

zZ
succ

pre

add

Zero

pre(zero)

succ(zero)

Fig. 2/21

This algebra does not satisfy the derived axiom 0’

GO G)= (50) = G- () D ED

This algebra is not a termalgebra of the variety over the given presentation.
Therefore axioms derived by induction are not always satisfied by this
algebra.

52 Abstract Data Types as Initial Algebras Chap. 2

Example of the Circular Lists

A somewhat richer example is the Circularlist [Guttag78a]. This data type
has seven operations. The operations create, insert, delete, value and
isempty have analogous operations as in type Stack. The operations right
and join introduce additional complexity by allowing us to rotate the list
of stored elements and to join two lists into one. The presentation is given
in Fig. 2/25. An informal description is given in the next paragraph.

Every circular list can be denoted by a variable-free term consisting of
the Circularlist operation names create and insert (and Nat operation
names) only. We can represent circular lists in a graphical way, see Fig.
2/22. The arrow refers to the last inserted natural number.

_,Q —

create insert(create, n;)
- ﬁ‘ﬂ —{n)
insert(insert(create, n;), ny) insert(insert(insert(create, n,), n,), n3)

Fig. 2/22

The operation isempty indicates whether a circular list is empty. The
operation value returns the last inserted natural number. The operation
delete deletes the last inserted natural number from a circular list. The
operation right rotates the list of stored elements as shown in Fig. 2/23.

Sec. 2.17 Induction 53

right(——— !) = ﬁ

Fig. 2/23

The operation join joins two lists into one as illustrated in Fig. 2/24.

&
_, G-

i g
Fig. 2/24 <3 ﬁ

sorts Circularlist; Nat; Bool;
operations

zero: -> Nat;

succ: Nat -> Nat;

true, false: -> Bool;

create: -> Circularlist;

insert: Circularlist * Nat -> Circularlist;

isempty: Circularlist -> Bool;

delete, right: Circularlist -> Circularlist;

value: Circularlist -> Nat;

join: Circularlist * Circularlist -> Circularlist;
declare c, ¢y, c,: Circularlist; n, ng, n;: Nat

axioms
isempty(create) = true; 1
isempty(insert(¢, n)) == false; —
delete(create) == create; —3

delete(insert(c,n)) ==c; 4

54 Abstract Data Types as Initial Algebras Chap. 2

value(create) == zero; 5
value(insert(¢, n)) ==n; -6~
right(create) == create; —
right(insert(create, n)) == insert(create, n); 8 -
right(insert(insert(c, ny), ny)) ==

insert(right(insert(¢, ny)), ny J); _9__
join(¢, create) ==¢; 10 --
join(¢y, insert(c3, n)) == insert(join(¢y, ¢3), n); --11--

Fig. 2/25

For every termalgebra of the presentation the following theorem can be
proved by induction:

declare c,, c,: Circularlist; n: Nat;
axiom
join(right(insert(¢;,n)), ¢y) ==
right(insert(join(¢;, ¢3). n)); -0 --

It can be proved by induction over c,. For each termalgebra of the
presentation each object can be denoted by a variable-free term consisting
of the operation names create and insert only. This can be proved by
induction.

To prove axiom O’, we have to prove the induction base

declare c;: Circularlist; n: Nat;
axiom
join(right(insert(c¢;, n)), create) ==
right(insert(join(¢;, create). n)); -1 -

and, given the induction hypothesis

declare c;, c'z: Circularlist; n: Nat;
axiom
join(right(insert(¢y, n)), ¢y) ==
right(insert(join(¢;, ¢5), n)); —D

we have to prove the induction conclusion

declare c,, c,: Circularlist; n, m: Nat;
axiom
join(right(insert(¢y, n)), insert(c,, m)) ==
right(insert(join(c;, insert(c;, m)). n)); -3 -

Sec. 2.17 Induction 55

If axiom O’ is denoted as F(c;, n, c;), we have the following induction
scheme.

F(¢y, n, create)
F(cy,n,¢cp)=> F(cy, n,insert(c,, m))

The induction base 1’ can be proved by equational reasoning using axiom
10 of Fig. 2/25.

The induction conclusion 3’ can be proved by equational reasoning using
axioms 9 and 11 of Fig. 2/25 and using the induction hypothesis.

2.18 Hidden Operations and Sorts

The readability of specifications can often be enhanced by using auxiliary
operations or auxiliary sets of objects, respectively called hidden operations
and hidden sorts. The abstract data types defined by a presentation consist
of the sets of objects 8.S; together with the functions 8.s; between these
sets, of the initial algebra of the category over the presentation, with
exclusion of hidden sorts and hidden operations. Examples of hidden
operations have already been given, e.g., the auxiliary operation allover in
Fig. 2/19.

Hidden operations and hidden sorts can not only be useful, they can
even be necessary. Without hidden operations and hidden sorts, many
abstract data types would require an infinite number of axioms. The
peekstack [Thatcher78, Nolan79] is such a data type that cannot be
specified without hidden operations.

Example of the Peekstacks

A peekstack is a stack that has a window. This window can cover any
item of the peekstack or it can disappear. By means of the operation return
the window covers the top of the peekstack. The operation return on the
empty peekstack has no effect. The window can be moved downwards
using the operation down. If the window covers the bottom item of the
peekstack and the operation down is executed, the window will disappear.
If the window has disappeared. the execution of the operation down is not
allowed. Only the item covered by the window can be accessed by the
operation read. If the window has disappeared, the operation read will
return an error item. The window of the empty peekstack will always

56 Abstract Data Types as Initial Algebras Chap. 2

disappear. The execution of the operation push is only allowed if the
window covers the top of the peekstack or if the peekstack is empty
(otherwise the erroneous peekstack err is obtained). The new item will be
added on top of the peekstack and the window will cover the new top.
The execution of the operation pop is only allowed if the peekstack is not
empty and if the window covers the top of the peekstack (otherwise the
erroneous peekstack err is obtained). The top item will be removed from
the peekstack and the window will cover the new top or will disappear if
the peekstack becomes empty.

It can be proved that the peekstack requires an infinite number of
axioms if no hidden operations are used [Thatcher78]. This requirement
can be intuitively understood by looking at the axioms of Fig. 2/26.

declare s: Peekstack; it, ity, itp, it3: Item;
axioms
read(push(s, it)) == it;
read(down(push(push(s, ity), ity))) ==ity;
read(down(down(push(push(push(s, ity), ity), tiz)))) == ity;

Fig. 2/26

The introduction of a hidden operation shove is sufficient for the
construction of a finite axiom system to specify non-erroneous peekstacks.
The operation shove has the effect of adding an item on top of the
peekstack irrespectively of the current position of the window, which
remains at the same position. A specification of the peekstack is given in
Fig. 2/27. For reasons of error handling, the auxiliary operations
safePeekstack and ifthenelse are introduced. The operation safePeekstack
yields false if its argument is an erroneous peekstack. The topic of error
handling will be thoroughly discussed in Chapter 7.

sorts Item; Peekstack;

operations
error: -> Item;

newstack: -> Peekstack;
push: Peekstack * Item -> Peekstack;
shove: Peekstack * Item -> Peekstack; -- hidden operation --

Sec. 2.18 Hidden Operations and Sorts 57

-~ Every non-erroneous peekstack can be written as
-- shove(... shove(push(... push(newstack, i;) ..., ij), ix) «ev, iz)
-~ with possibly no occurrences of the operation shove
-- (i.e. the top of the peekstack is covered by the window, if any)
-~ and/or no occurrences of the operation push
-- (i.e. the window has disappeared).
-- i is covered by the window, if any.
err: -> Peekstack;
safePeckstack: Peekstack -> Bool;
pop: Peekstack -> Peekstack;
read: Peekstack -> Item;
return: Peekstack ~-> Peekstack;
down: Peekstack -> Peekstack;

true, false: -> Bool;
ifthenelse: Bool * Peekstack * Peekstack -> Peekstack;

declare s, sq, 55t Peekstack; it, ity, ity: [tem;

axioms
push(err, it) == err;
push(shove(s, ity), ity) == err;

shove(err, it) == err;

safePeekstack(newstack) == true;

safePeekstack(push(newstack, it)) == true;

safePeckstack(push(push(s, ity), ity)) == safePeekstack(push(s, ity));
safePeekstack(push(shove(s, ity), it;)) == false;

safePeekstack(push(err, it)) == false;

safePeekstack(shove(s, it)) == safePeekstack(s);

pop(newstack) == err;

pop(push(s, it)) == ifthenelse(safePeekstack(push(s, it)),
-- then --s,
-- else -- err);

pop(shove(s, it)) == err;

pop(err) == err;

read(newstack) == error;

read(push(s, it)) == ifthenelse(safePeekstack(push(s, it)),
-- then --it,
—- else -- error);

read(shove(s, it)) == read(8);

read(err) == error;

return(newstack) == newstack;

return(push(s, it)) =— push(s, it);

return(shove(s, it)) == push(return(s), it);
return(err) == err;

down(newstack) == err;

down(push(s, it)) == ifthenelse(safePeekstack(push(s, it)),
-- then -- shove(s, it),
--else —-err);

down(shove(s, it)) == shove(down(s), it);

down(err) ==err;

ifthenelse(true, sy, s3) == s1;
ifthenelse(false, sy, S5) == $3;

Fig. 2/27

58 Abstract Data Types as Initial Algebras Chap. 2

2.19 Bibliographic Notes

The fundamental ideas of one-sorted algebras go back to Birkhoff
[Birkhoff38], Cohn [Cohn65] and Graetzer [Graetzer68], in which they are
called universal algebras. Sometimes they are called homogeneous algebras
[Guttag78c].

The pioneers of many-sorted algebras (originally called heterogeneous
algebras) are Higgins [Higgins63], and Birkhoff and Lipson [Birkhoff70],
who generalized the ideas of one-sorted algebras.

The idea of defining algebras in terms of operations and axioms was
picked up by Zilles and Liskov to specify abstract data types like stacks,
queues and strings by algebraic specifications [Zilles74, Liskov74]. Goguen
[Goguen74] applied the basic principle of many-sorted initial algebras to
the denotational semantics of context-free languages.

The group consisting of Goguen, Thatcher, Wagner and Wright (later
occasionally also Bloom, Ehrig and Kreowski) is sometimes referred to as
the ADJ group.

Many interesting papers on many-sorted algebras can be found in
literature. The publications of Burstall and Goguen [Burstall82] and
Goovaerts and Van Puymbroeck [Goovaerts83] are very readable texts for
non-mathematicians. Many small examples of algebraic specifications can
be found in [Guttag78a]. A more mathematically-oriented article is the
famous work of Goguen [Goguen78]. Among others the following
properties are proved there:

e If the algebras A and B are both initial in a category C of algebras over
a presentation, then A and B are isomorphic. If A and B belong to a
category C of algebras over a presentation, if A is initial in C and if A
and B are isomorphic, then B is initial in C.

e The initial algebra of the variety over a presentation is the quotient
algebra of the word algebra (of the presentation) for the equality
relations defined by the axioms.

Initial algebras are often characterized by their properties of having no
junk and having no confusion [Burstall82, Futatsugi85]. Having no junk
means that each object of the algebra can be denoted by at least one
variable-free term, i.e. the algebra is a termalgebra. Having no confusion
means that two variable-free terms denote the same object if they can be
proved to be equal by equational reasoning from the given axioms. A
termalgebra is often called reachable [Sannella85a]. A termalgebra is called
generated by Ehrig and Mahr [Ehrig85]. They call an algebra of a category
typical when two variable-free terms denote the same object if and only if
this-canbe proved by equational reasoning. A generated and typical
algebra is always initial. The initial algebra of the variety of the
presentation is always generated and typical [Ehrig85].

Sec. 2.19 Bibliographic Notes 59

In literature, axioms are also called equations, laws or identities, and the
terms are sometimes called expressions or formulas. An interpretation is a
synonym for an assignment. Given an algebra with its presentation and an
assignment, the object denoted by a term is sometimes called the
evaluation of the term in the given algebra [Goovaerts83]. In [Goguen78] a
presentation only consists of a set of axioms over a given signature. The
set of all axioms derivable by equational reasoning from a given set of
axioms is called the closure of the given set; a set of axioms forming its
own closure is called closed [Burstall82]. If the axioms of a presentation
are closed, the presentation is called a theory [Burstall82]. Because in most
cases the closure is an infinite set, a theory is usually used as a synonym
for a presentation [Burstall77]. The sets of objects are usually called
carriers [Goguen78], in [Guttag78c] they are called phyla and the phylum
one is interested in, is called the type of interest (TOI). In [Goguen78] a
word algebra is also called a Herbrand universe.

[Wirsing82, Laut83] also consider algebras containing partial functions.
Partial functions however can be made total by adding error elements to
the sets of objects.

The notion of initiality is well-known in category theory and initial
algebras can be seen as a special case of free algebras. Information about
category theory is available in [Hilton74, Goldblatt79, Ehrig85].

Equational Reasoning

A survey of equational reasoning can be found in [Huet80, Ehrig85,
Lescanne85]. A well-known problem is to find an algorithm that for any
presentation can check whether two terms are equal by equational
reasoning. This problem is called the word problem. It has been proved
that the word problem is undecidable [Tarski68, McNulty76, Evans78]. A
partial solution is the Knuth-Bendix algorithm [Knuth67], which does not
always terminate. The ideas of the Knuth-Bendix algorithm have been
generalized to the critical pair completion method [Buchberger85],

The rules of equational reasoning were originally designed for one-
sorted algebras. One-sorted algebras need only rules for reflexivity,
symmetry, transitivity and substitutivity. For many-sorted algebras two
new rules, the abstraction and concretion rules, have been added to avoid
unsound deductions for abstract data types having empty sets of objects.
The following example comes from [Meseguer85a).

sorts A; B;

60 Abstract Data Types as Initial Algebras Chap. 2

operations
t, f:-> B;
not: B -> B;
and,or: B*B-> B;
foo: A -> B;
declare a: A; b: B;
axioms
not(t)==1;
not(f) ==1;
or(b,not(b)) ==1;
and(b, not(b)) ==T1;
or(b,b) ==1b;
and(b,b) =1b;
foo(a) ==not(foo(a));

Fig. 2/28

The rules of one-sorted equational reasoning give

== or(foo(a), not(foo(a))) ==or(foo(a), foo(a)) ==foo(a) ==
and(foo(a), foo(a)) == and(foo(a), not(foo(a))) ==

If these rules of deduction were sound, then the axiom t == f should be
satisfied by every algebra of the variety over the presentation. But there is
an algebra belonging to the variety over the presentation in which the
axiom is not satisfied. It is the algebra consisting of the boolean values and
an empty set 8.A. It is obvious that this algebra satisfies the axioms of Fig.
2/28, although § true) =

A first rigorous treatment of equational reasoning for many-sorted
algebras was given in [Goguen81]. Using these deduction rules (see Section
2.13) we can only derive for the specification of Fig. 2/28

declare a: A;
axiom

But we cannot derive

axiom
t == ;

because the concretion rule cannot be applied.

In Section 2.13 equational reasoning was based on the reflexivity,
symmetry; transitivity;substitutivity, abstraction and concretion rules. It
is possible to use alternative sets of equational rules that are equivalent to

Sec. 2.19 Bibliographic Notes 61

the given one, see Chapter 5 in [Ehrig85]. In the same chapter the strong
relationship between equational reasoning and term rewriting is
thoroughly discussed.

Induction

Many formal definitions of induction can be found in literature. The most
general (but rather tedious) definition we have found, is given in [Boyer79]
for LISP programs. The correctness of proving by induction is also
considered there. Many heuristic rules are given in [Boyer79] to find an
appropriate induction scheme that is complete and sound. The rules are
based on the natural relation between recursion and induction. In
[Bevers85], these ideas have been specifically applied on algebraic
specifications.

The Knuth-Bendix algorithm, which was mentioned earlier, can not
only be used for equational reasoning but also for proving by induction.
Using this algorithm is sometimes called induction without induction or
inductionless induction [Goguen80, Musser80, Huet82].

Graphical Notation

The graphical notation we used in this chapter is based on [Lewi86], where
a similar notation for the semantic description of algorithmic languages is
used. Another graphical notation can be found in [Goguen78]. An example
of such notation for the presentation of Fig. 2/15 is given in Fig. 2/29. The
main difference is that in our graphical notation the algebra (semantic
part) is pictured, while in [Goguen78] the signature (syntactic part) is
pictured.

Hidden Operations and Sorts

The use of hidden operations was the subject of an interesting discussion
ending with the conclusion that hidden operations strictly increase the
expressive power of algebraic specifications [Ehrig85]. By using hidden
operations, we are able to specify any computable total function, and some
non-computable total functions too [Ehrig85]. Other examples of hidden
operations can be found in [Laut83], where the Pascal file type is specified.
An example of a hidden sort can be found in [Mallgren82], where it is used
for correctness proofs.

62 Abstract Data Types as Initial Algebras Chap. 2

Zero

succ ‘

top ’ push
newstack
pop

isnewstack

Bool false

true

Fig. 2/29

Initial Versus Final Algebras

In this chapter the mathematical model on which abstract data types have
been based, is the initial algebra. Another frequently used mathematical
model is the final algebra. Roughly speaking, the initial algebra defined by
a presentation is the termalgebra satisfying the given axioms that has the
greatest possible number of objects, whereas the final algebra is the
termalgebra satisfying the given axioms that has the smallest possible
number of objects. Obviously, between these two extreme algebras, there
can be a wide spectrum of algebras.

The basic philosophy of initial semantics is that two variable-free terms
denote a different object unless it can be proved from the given axioms
that they denote the same object. The basic philosophy of final semantics
is that two variable-free terms (of the same sort) denote the same object
unless it can be proved from the given axioms that they denote a different
object.

The difference between initial and final algebras will be illustrated by
the presentation of Fig. 2/30. We assume that the abstract data type of
boolean values including an ifthenelse function and the abstract data type
of natural numbers including an equality function have been defined.

Sec. 2.19 Bibliographic Notes 63

sort X;
operations
empty: -> X;
insert: Nat* X -> X;
isin: Nat * X -> Bool;
declare n, ny, ny: Nat; x: X;
axioms
insert(ny, insert(ny, x)) == insert(n,, insert(ny, x));
isin(n, empty) == false;
isin(ny, insert(ny, x)) ==
ifthenelse(eq(ng, 0y),
-~ then -- true,
--else -- isin(ny, x));

Fig. 2/30

The initial algebra of this presentation is the bag of natural numbers
with the functions insert and isin. The first axiom expresses that the order
of insertion is irrelevant. The two other axioms define the function isin.
The number of times a natural number has been inserted, is relevant.
Two bags are different if and only if at least one natural number has been
inserted a different number of times.

The final algebra of this presentation is the set of natural numbers with
the functions insert and isin. Two sets are equal unless the function isin
gives a different result, i.e. one set contains a natural number that is not
included in the other set. The first axiom is redundant, it can be deleted
without changing the final semantics.

Sometimes initial and final semantics are both used in a hierarchy of
specifications [Goovaerts83]. Such hierarchy starts with initial semantics.
Each level of the hierarchy has to preserve the structure of the previously
defined abstract data types, otherwise the specification is inconsistent or
not sufficiently complete. If only final semantics are used, an abstract data
type (usually Bool, e.g., [Hornung80]) must be predefined, otherwise all
sets of objects will degenerate into empty sets or singletons. However, this
predefined abstract data type cannot be specified using final semantics
only.

An important reason why initial semantics are more frequently used in
literature, is that algebraic specifications based on initial algebras can, in
general, easier be made constructive, thus enabling rapid prototyping.
Some abstract data types however are more naturally specified in terms of
a final algebra [Goovaerts83].

A mathematical definition of final algebras can be found in [Wand79,
Kamin80, Bergstra83]..-An.algebra F is final in a category C of algebras
over a presentation if and only if F belongs to C and for each algebra A in

64 Abstract Data Types as Initial Algebras Chap. 2

C. a unique homomorphism in C from A to F does exist. In [Hornung80,
Wirsing82] final algebras are called terminal algebras. Some examples in
[Guttag86] are based on final semantics, others are based on behavioural
equivalence.

Isomorphisms Versus Behavioural Equivalence

Roughly speaking, we may say that two algebras belonging to the variety
over a given presentation, are behaviourally equivalent with respect to a set
of observable sorts if it is not possible to distinguish them by evaluating
terms of an observable sort [Sannella85a, Sannella87]. Notice that the
evaluated terms can have proper subterms of a sort that is not observable.
Usually, the initial algebra of a presentation is taken, and this algebra is
generalized to the class of algebras that belong to the variety over the given
presentation and that are behaviourally equivalent to the initial one with
respect to the observable sorts. Abstract in abstract data types now means
abstract up to behavioural equivalence instead of up to isomorphism. This
form of abstraction is called behavioural abstraction [Sannella85al.

Again consider the presentation of Fig. 2/30. Using the previous
definition, the initial algebra (bag) and the final algebra (set) are
behaviourally equivalent with respect to {Bool}.

One of the first articles on behavioural equivalence was [Giarratana76].
Guttag used behavioural equivalence in [Guttag77. Guttag78bl.
[Sannella85a] called it observational equivalence. The examples given in
[Guttag78a] seem to be based on behavioural equivalence.

In [Meseguer85a] abstract data types with abstract in the sense of up to
behavioural equivalence are called abstract machines. A sharp distinction
is made between abstract data types, which are just algebras, e.g., initial or
final algebras, and abstract machines, which are behavioural equivalent
with respect to the visible sorts, i.e. observable sorts.

A typical example of an abstract data type is that of the integers, which
consists of objects, i.e. integers, and of functions defined upon them, e.g.,
addition and subtraction. A typical example of an abstract machine is a
software module in the sense of [Parnas72a). Such a module specifies only
the behaviour and not the different data structures, which are considered
as implementation details. Algebras that represent different abstract data
types. i.e. are not isomorphic, may represent the same abstract machine, i.e.
may be behaviourally equivalent. E.g., the initial and final algebra of Fig.
2/30 represent different abstract data types (bag and set) but they
represent the same abstract machine with respect to {Bool}. This abstract
machine may even be represented by an algebra (of the variety of the
presentation of Fig. 2/30) that is not a termalgebra, as long as this algebra
is behaviourally equivalent to bag and set.

Sec. 2.19 Bibliographic Notes 65

Notice that abstract machines generalize the idea of abstract data types
since in case all sorts are visible two machines are equivalent if and only if
they are isomorphic, i.e. abstract machines become abstract data types if all
sorts become visible [Meseguer85al.

The price to be paid for this generalization is a higher complexity in
rigorous reasoning because two machines that are behaviourally equivalent
need not be isomorphic. An axiom that is satisfied by an algebra need not
be satisfied by another algebra that is behaviourally equivalent to the first
one. E.g., the axiom

insert(n;, insert(ny, x)) == insert(ny, x);
is satisfied by the final but not by the initial algebra of Fig. 2/30.

However, both algebras are behaviourally equivalent with respect to
{Bool}, as mentioned above.

3. An Algebraic Specification
Language

"The metalanguage of a formal definition must not become

a language known to only the priests of the cult. Tempering science
with magic is a sure way to return to the Dark Ages."

M. Marcotty

In Chapter 2 we dealt with the mathematical foundations of algebraic
specifications. These foundations are important for gaining insight into the
underlying concepts of the specification formalism. From these
foundations it became clear that, unlike informal specifications, algebraic
specifications can be made in a precise and unambiguous way.

To illustrate these underlying concepts, a simple notation for algebraic
specifications was used. Such a notation is quite satisfactory to describe
small examples. In this chapter the emphasis is put on the development of
large software. Then, the simple notation used in Chapter 2 is
inappropriate. What we need in the first place is a linguistic support to
express modularity of software design to reduce complexity. This leads to
the introduction of the notion of module. Such modules contain import
and export clauses to express the interfaces between modules, also called
intermodule dependency, and to provide additional safety. Modules with
import and export clauses are analogous to what is available in traditional
high level programming languages as Ada, Modula-2 and Clu.

Another important reason why the simple notation used in Chapter 2 is
inappropriate is the absence of any form of parameterization. The
algebraic specification language we propose in this chapter provides a high
degree of parameterization. We believe that specification by abstraction
and specification by parameterization are both powerful means to design
modular and reusable software. An important aspect of parameterization
in algebraic specifications is that the requirements of the interfaces
(between formal and actual parameters) are not only of a syntactic nature,
but also of a semantic one. This is in sharp contrast with parameterization
in conventional programming languages as Ada and Clu, where semantic
requirements can only be expressed in the form of program comment.
Incorporation of semantic requirements within the algebraic specification
language enhances software robustness. Another motivation for
introducing parameterized specifications is the treatment of incomplete
specificationspinewhichwsomendesign decisions are delayed. Such design
features can be treated as parameters of the specification. In this way a
design can be made top-down.

Sec. 3.0 67

Modules and their intermodule dependency form a graph. Hierarchical
specifications are a special case. Hierarchical specifications can be built
bottom-up. Starting from the primitive modules, new modules can be
constructed that use (via import clauses) these primitive modules as
building blocks and so on. To maximize the profits of hierarchical
specifications, each level of the hierarchy must meet some constraints,
called hierarchical constraints, to preserve the structure of the previous
levels. Hierarchical constraints can be mechanically verified, enhancing
software reliability.

To enhance readability, we introduce a number of notational extensions
such as ifthenelse, case and let constructs. In our specification language
prefix, infix, postfix as well as mixfix notations are allowed as long as the
notation does not give rise to conflicts. Also overloading of operation
names is permitted. Other notational extensions are the use of qualified
names and renaming facilities. These naming and renaming facilities are
useful to realize the principle of reusability in software development
without being forced always to use the same names. Moreover, these
facilities are needed to avoid name conflicts.

Syntax Notation

The syntax of the algebraic specification language* is described using a
modified version of Backus-Naur Form. Syntactic categories are
represented by names possibly containing blanks. A nonterminal category
is defined in terms of other categories by a kind of equation known as
production rule. Categories that cannot be decomposed further are called
terminal. The name of a nonterminal category is enclosed by < and >.
The name of a terminal category is enclosed by ". A production rule
consists of the name of the (nonterminal) category being defined followed
by the symbol = and its defining sequence. Other symbols used are
vertical bars that separate alternatives, square brackets that enclose
optional items, a plus following an item to indicate that the item must
appear once or many times, and a star following an item to indicate that
the item may be omitted, appear once or be repeated many times. The plus

* Although a detailed description of the proposed algebraic specification language will be
given, this text is not intended as a reference manual. Detailed information about, e.g., the
lexical structure is not given.

68 An Algebraic Specification Language Chap. 3

and the star have the highest priority whereas sequencing has the lowest
one. Parentheses may be used to change priorities.

3.1 Modularity

3.1.1 Modules

Sorts, operations, declarations and/or axioms that logically belong together,
are grouped into a module. A specification is built up of a number of
modules. A specification has the following syntactic form:

<specification> = (<module>)+

<module> =

"module” [<module name>]";"
[<import clause>]
[<sorts part>]
[<operations part>]
[<declarations part>]
[<axioms part>]

"end" "module" [<module name>]";"

<import clause> =
" im PO rt" "all" "

from" <module name list> ";
<module name list> = <module name> ("," <module name>)*

<sorts part> =
("sort" | "sorts") (<sort name > ";")+

Usually, each module contains at most one sort. A module has the same
syntax as a presentation except for the enclosing keywords, the module
name and the import clause (if any). The import clause of a module M
enumerates the names of all other modules M;, My, ..., M, from which M
uses sorts and operations. These modules are called the directly imported
modules of M. The directly and indirectly imported modules of M;, M,

. and M,, are said to be indirectly imported modules of M. A module
without import clause is called a primitive module. Actually a specification
forms a directed graph. The modules represent the nodes, and the import
clauses, which describe the dependency relationships between the modules,
represent the arcs of the graph.

Sec. 3.1 Modularity 69

In Chapter 2 the notions of abstract data type and termlanguage were
defined for presentations. When we deal with modules, these definitions
have to be slightly modified. The abstract data types defined by a
specification are the abstract data types defined by the presentation
obtained by grouping the sorts, operations, declarations and axioms of the
modules of the specification. Analogously, the termlanguage defined by a
specification is defined as the termlanguage defined by the presentation
obtained by grouping the sorts, operations, declarations and axioms of the
modules of the specification.

The specification of Stack is shown in Fig. 3/1. The modules Bool and
Nat are primitive modules, directly imported by the module Stack.
Although the specification of Fig. 3/1 is equivalent to that of Fig. 2/14, it
is more modular and therefore more readable.

module Bool;
sort Bool;
operations
true, false: -> Bool;
end module Bool;

module Nat;
sort Nat;
operations
zero: -> Nat;
succ: Nat -> Nat;
end module Nat;

module Stack;
import all from Bool, Nat;
sort Stack;
operations
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;
declare s: Stack; n: Nat;
axioms
isnewstack(newstack) == true;
isnewstack(push(s, n)) == false;
pop(newstack) == newstack;
pop(push(s,n)) ==s5;
top(newstack) == zero;
top(push(s, n)) ==n;
end module Stack;

Fig. 3/1

70 An Algebraic Specification Language Chap. 3

Modularity provides us with a means to specify an abstract data type
in a stepwise way. Roughly speaking, in a first step a module is designed
containing only the sort and the primitive (i.e. basic) operations. In the
next steps modules defining more sophisticated operations are added.

Let us specify sets of natural numbers, see Fig. 3/2. We need the
operation emptyset, which represents the empty set, and the operation
insert, which puts a natural number into a set. They are defined in the
module PrimitiveSet. The axioms state that the order of insertions and the
number of duplicates are irrelevant. More sophisticated operations may be
the union, the intersection and the operation isin, which indicates whether
a natural number belongs to a set. They are specified in module
ExtendedSet. ExtendedSet imports from Bool, Nat, ExtendedNat and
PrimitiveSet.

module ExtendedNat;
import all from Bool, Nat;
operation
equal: Nat * Nat -> Bool;
declare n, n;, n,: Nat;
axioms
equal(zero, zero) == true;
equal(zero, succ(n)) == false;
equal(succ(n), zero) == false;
equal(suce(ny), suce(ny)) == equal(ng, n,);
end module ExtendedNat;

module PrimitiveSet;
import all from Nat;
sort Set;
operations
emptyset: -> Set;
insert: Nat * Set -> Set;
declare s: Set; n, n;, ny: Nat;
axioms
insert(ny, insert(ny, s)) == insert(ny, insert(ny, s));
insert(n, insert(n, s)) == insert(n, s);
end module PrimitiveSet;

module ExtendedSet;
import all from Bool, Nat, ExtendedNat, PrimitiveSet;
operations
isin: Nat * Set -> Bool;
union, intersection: Set * Set -> Set;
if: Bool * Set * Set -> Set;
declare n, n;, ny: Nat; s, s;, sp: Set;
axioms
isin(n, emptyset) == false;
isin(ny, insert(ny,s)) ==
if(equal(ny, ny),
-- then -- true,
——else —isin(ny,s));

Sec. 3.1 Modularity 71

union(s, emptyset) ==s;
union(sy, insert(ny, sy)) == insert(ny, union(sy, s5));
intersection(s, emptyset) == emptyset;
intersection(sq, insert(n, sy)) ==
ifCisin(n, 81),

-- then -- insert(n, intersection(sy, s,)),

-- else -- intersection(sy, 52));
if(true, sy, 53) == 53
if(false, sq, 53) == sy;

end module ExtendedSet;

Fig. 3/2

Convention: If no module name is explicitly given, the convention is
that the module name is identical to the first sort name defined within the
module. The module Nat of Fig. 3/1 is then equivalent to that of Fig. 3/3.

module;
sort Nat;
operations
zero: -> Nat;
succ: Nat -> Nat;
end module;

Fig. 3/3

3.1.2 Import and Export Clauses

The import clauses as defined so far will be further refined as in Modula-2
[Wirth82]. Except when the keywords all or all except are used, the
import clause must explicitly list not only the directly imported modules
but also the sorts and operations imported from these modules. If a
module M imports all sorts and operations that are exported by a module
M; to it, the import clause of M may contain

all from M;
Analogously, the import clause may contain

all except ... from M;;

72 An Algebraic Specification Language Chap. 3

Also export clauses are considered. The export clause of a module lists
the sorts and operations that are defined within the module and that can be
used outside the module. Optionally, the export list may contain the
names of the module(s) receiving the export. Clearly, hidden sorts and
hidden operations will not be exported in order to disable their use outside
the module in which they are defined (information hiding). If all sorts
and operations defined within a module are exported, the enumeration list
may be replaced by the keyword all. One can also use the keywords all
except followed by the list of sorts and operations that are not exported.

Import and export clauses provide an extra protection for the designer
as well as for the user of modules. This protection results in specifications
of higher quality and reliability.

A module with import and/or export clauses has the following
syntactic form:

<module> =

"module” [<module name>]";"
[<import clause>]
[<export clause>]
[<sorts part>]
[<operations part>]
[<declarations part>]
[<axioms part>]

"end" "module” [<module name>]";"

<import clause> =
"import" (<item name list> "from" <module name list> ";")+

<export clause> =
"export” (<item name list> ["to" <module name list> 1"")+

<item name list> =
<item name> ("," <item name>)*
["all" ["except” <item name> ("," <item name>)*]

<item name> = <sort name> | <operation name>

<module name list> = <module name> ("," <module name>)*
<sorts part> =
("sort" | "sorts") (<sort name > "")+

In Fig. 3/4 the specification of Fig. 3/1 is extended with import and
export clauses.

Sec. 3.1

module Bool;
export Bool, true, false;
sort Bool;
operations
true, false: -> Bool;
end module Bool;

module Nat;
export Nat, zero, succ;
sort Nat;
operations
zero: -> Nat;
succ: Nat -> Nat;
end module Nat;

module Stack;

import Bool, true, false from Bool;
Nat, zero from Nat;

export all;

sort Stack;

operations
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;

declare s: Stack; n: Nat;

axioms

isnewstack(newstack) == true; 1 -
isnewstack(push(s, n)) == false; --2--
pop(newstack) == newstack; -3
pop(push(s,n)) ==s; 4
top(newstack) == zero; 5
top(push(s,n)) ==n; 6 -
end module Stack;
Fig. 3/4

3.1.3 Export of the Import

Modularity 73

A module can not only export the sorts and operations defined within the
module itself, but it can also export sorts and operations imported from
elsewhere by the module. If an imported sort or operation is exported
again, it must be mentioned explicitly in the export clause together with
the module it is imported from. An example is given in Fig. 3/5.

74 An Algebraic Specification Language Chap. 3

module ExtendedStack;
import Nat, zero, succ from Nat;
Stack, newstack, push, pop, top, isnewstack from Stack;
export length from ExtendedStack;
Stack, newstack, push, pop, top, isnewstack from Stack;
operation
length: Stack -> Nat;
declare s: Stack; n: Nat;
axioms
length(newstack) == zero;
length(push(s, n)) == succ(length(s));
end module ExtendedStack;

module X;
import all from ExtendedStack;
. newstack ...
. length ...
end module X;

Fig. 3/5

3.2 Hierarchical Specifications

In general, a specification forms a directed graph. As mentioned in Section
3.1.1, the modules represent the nodes, and the dependency relationships
represent the arcs of the graph. The dependency relationships are described
by the import clauses of the modules involved in the graph. A special case
is the hierarchical specification where the directed graph is acyclic. An
example of a hierarchical specification was given in Fig. 3/4. If a module
A is directly or indirectly imported by a module B, module B must not be
directly or indirectly imported by A in a hierarchical specification. In
Section 3.5 non-hierarchical specifications will be studied.

Making hierarchical specifications is a useful design method because the
amount of complexity the human mind has to cope with at any level, is
considerably less than that of the whole specification. A reader as well as
a designer can focus on the primitive modules first. Next, the modules
that directly import these ones can be studied and built, and so on. So we
need not understand the specification as a whole at once, but we can gain
insight in a stepwise way. Such a design is called bottom-up.

Sec. 3.2 Hierarchical Specifications 75

Hierarchical Constraints

To maximize the profits of hierarchical specifications during the bottom-up
design, each new level of the hierarchy must preserve the structure of the
algebra defined by the previous levels. Therefore, two hierarchical
constraints are introduced. Given a hierarchy H of modules meeting the
hierarchical constraints. A new module M, importing from one or more
modules of the hierarchy H, can be added to that given hijerarchy H
without violating the hierarchical constraints if the structure of the
algebra defined by H is preserved:

1. Any two objects that were defined as different in the initial algebra
of the given hierarchy H, must not become equal after addition of the
new module M. This constraint is called no confusion. It says that if
two arbitrary variable-free terms belonging to the termlanguage of
the given hierarchy H cannot be proved to be equal by equational
reasoning in H, then it must not be possible to prove them to be equal
by equational reasoning after addition of M.

2. A set of objects defined in the initial algebra of the given hierarchy H,
must not be extended with new objects after addition of the new
module M. This constraint is called no junk. It says that if an
arbitrary variable-free term t belongs to the termlanguage of the
extended hierarchy, and if the sort of t was defined in H, then
another variable-free term t’ that belongs to the termlanguage of H
must exist such that t' can be proved equal to t by equational
reasoning in the extended hierarchy.

A set of primitive modules form a hierarchy that always meets the
hierarchical constraints.

Example of the Stacks

In the stack example of Fig. 3/4 the dependency graph is hierarchical and
the hierarchical constraints are met since the structure of the algebra
defined by the hierarchy is preserved when the module Stack is added:

1. The first two axioms are of sort Bool. To prove that true and false
do not become equal, it must be proved that newstack and push(s,
n) are unequal for each possible assignment. This proof is
straightforward. The last two axioms are of sort Nat. Analogously,
two natural numbers that are different in module Nat, do not become
equal.

76 An Algebraic Specification Language Chap. 3

2. We will use the property that with axioms 3 and 4 every occurrence
of pop in a variable-free term can be eliminated. The only operation
that could define a new object belonging to the set Bool is the
operation isnewstack. But using the first 2 axioms and the property
mentioned, it is easy to see that the result of isnewstack always can
be reduced to true or false. Analogously, no new object belonging to
the set Nat has been defined.

The first hierarchical constraint would have been violated (confusion) if,
e.g., the axiom:

push(newstack, zero) == newstack;
was added because using this and the first 2 axioms it can be proved that:
true == false;

The second hierarchical constraint would have been violated (junk) if, e.g.,
the first axiom was forgotten, because then

isnewstack(newstack)

would denote a new boolean object.

3.3 Notational Extensions

3.3.1 Ifthenelse Construct

In Fig. 3/6 a queue of natural numbers is specified. A queue is a first-in
first-out list. The operation newq creates an empty queue, addq adds a
natural number to the given queue, isnewq tests whether a queue is empty,
the operation deleteq removes the least recently inserted natural number,
frontq returns the least recently inserted natural number, and appendq
concatenates two queues into a single one. To avoid error treatment at this
stage, which is discussed in Chapter 7, the operation deleteq applied to an
empty queue returns the empty queue, and the operation frontq applied to
an empty queue returns zero.

module Queue;
import Bool, true, false from Bool;
Nat from Nat;
export all;
sort Queue;

Sec. 3.3

operations
newq: -> Queue;
addq: Queue * Nat -> Queue;
isnewq: Queue -> Bool;
deleteq: Queue -> Queue;
frontq: Queue -> Nat;

axioms
isnewq(newq) == true;

deleteq(newq) == newg;
deleteq(addq(g, n)) ==
if isnewq(q)
then newq
else addq(deleteq(q), n)
end if;
frontq(newq) == zero;
frontq(addq(g, n)) ==
if isnewq(q)
then n
else frontq (q)
end if;
appendq(q, newq) == gq;

addq(appendq(g5, g2), n);
end module Queue;

appendq: Queue * Queue ~-> Queue;
declare q, q1, 93: Queue; n: Nat;

isnewq(addq(q, n)) == false;

appendq(q1, addq(gz, n)) ==

Fig. 3/6

Notational Extensions 77

In Fig. 3/6 the ifthenelse construct, which the reader is undoubtedly
familiar with, is introduced. An ifthenelse construct has the following

syntactic form:

<ifthenelse construct> =

"if" <boolean expression>

"then" <expression>
"else" <expression>
"end" “if"

The ifthenelse construct is not a new concept, it is only an overloaded
language-defined operation in mixfix notation. It is equivalent to a family
of user-defined operations ifSort, one for each sort Sort, using the
traditional prefix notation. This is done for the example of Fig. 3/6
resulting in the less readable specification of Fig. 3/7.

78 An Algebraic Specification Language

module Queue;
import Bool, true, false from Bool;
Nat, zero from Nat;
export all;
sort Queue;
operations
newq: -> Queue;
addq: Queue * Nat -> Queue;
isnewq: Queue -> Bool;
deleteq: Queue -> Queue;
frontq: Queue -> Nat;
appendq: Queue * Queue -> Queus;
ifNat: Bool * Nat * Nat -> Nat;
ifQueue: Bool * Queue * Queue -> Queue;
declare q, q;, q3: Queue; n, n,, ny: Nat;
axioms
isnewq(newq) == true;
isnewq(addq(g, n)) == false;
deleteq(newq) == newgq;
deleteq(addq(q, n)) ==

frontq(newq) == zero;
frontq(addq(q, n)) ==

ifNat(isnewq(q), n, frontq(q));
appendq(q, newq) ==gq;
appendq(q;, addq(qy, n)) =—

addq(append(q1, q3), n);
ifNat(true, ny, ny) == ng;
ifNat(false, ny, np) ==ny;
ifQueue(true, q1, q2) == qy;
ifQueue(false, q1, q2) == q3;

end module Queue;

ifQueue(isnewq(q), newq, addq(deleteq(q), n));

Fig. 3/7

3.3.2 Mixfix Notations

Chap. 3

The mixfix notation used for the ifthenelse construct can also be used for
user-defined operations as long as the notation remains unambiguous.
Prefix, infix and postfix notations are particular cases of mixfix notations.
In Fig. 3/8 a specification for the abstract data type of the boolean
values is given, using its classical mixfix notation. The underscore '_ " isa

place holder (indicating the places of the arguments). Parentheses avoid

ambiguous notations.

module Bool;
export all;
sort Bool;

Sec. 3.3 Notational Extensions 79

operations
true, false: -> Bool;
not _: Bool -> Bool;
__and _: Bool * Bool -> Bool;
__or _: Bool * Bool -> Bool;
__=> _:Bool * Bool -> Bool;
__ <= _: Bool * Bool -> Bool;
__<=> _:Bool * Bool -> Bool;

declare b, b;, by, bs: Bool;

axioms
bandb==0b; borb=="b;
b; and by ==by and by; b; or by == by or by;
byand (b or by) ==b;; by or (by and by) == by;
band true==>b; borfalse==";
b and not b ==false; b or notb==true;
not true == false; notnotb=="b;
(by and by) and by == b; and (b, and b3);
(by or by) or by == by or (by or by);
b; and (by or by) == (b; and b,) or (by and by);
by or (by and by) == (by or b,) and (by or by);
b; => by ==if b; then b, else true end if;
by <=by==by=> by;
bl <=> b2 == (b1 = bz) and (b]_ <= b2);

end module Bool;

Fig. 3/8

In Fig. 3/9 the specification of the unbounded array of boolean values
with natural numbers as indices is given. The mixfix notation _[__/ _]
is used for the assign operation. If no place holders are given for a
nonnullary operation, the operation will be used in the classical prefix
notation with parentheses and commas, e.g., the operation read. We
assume that the module Nat contains an equality operation that has the
classical infix notation with equality sign:

= _:Nat * Nat -> Bool;

module Array;
import Bool, true, false, not _ from Bool;
Nat, _ = __from Nat;
export all;
sort Array;
operations
empty: -> Array;
-- This is the empty array.
b/)i Array * Bool* Nat-> Array;
-- This operation assigns a boolean value to a given array

80 An Algebraic Specification Language Chap. 3

-- with a given natural number as index.

isdefault: Array * Nat -> Bool;
-- This operation checks whether the given index (natural number) of
-- the given array has still its initial default value true.

read: Array * Nat -> Bool;
-- This operation returns the boolean value of the index indicated
-- by the natural number in the given array.
declare ar: Array; n, ng, ny: Nat; b, by, by: Bool;
axioms
not(ny=ny)=>ar[b;/n; J[by/ny]=—=ar{by/ny31[b;/n;};
-- The order of assignments is irrelevant as long as the indices are not equal.
-~ Conditional axioms are discussed in Section 3.3.3.
ar[b;/n]llby;/n]==ar[by/n];
-- For a given index, only the last assignment is relevant.
isdefault(empty, n) == true;
isdefault(ar[b/ny L, np) ==
if n) =1y
then false
else isdefault(ar, np)
end if;
read(empty, n) == true; -- Arrays are initialized with true.
read(ar[b/ng], ny) ==
if Ny =1y
then b
else read(ar, n,)
end if;
end module Array;

Fig. 3/9

3.3.3 Conditional Axioms

In Fig. 3/9 a conditional axiom was used. This is not a new concept since a
conditional axiom of the form

<boolean expression> > <expression 1> == <expression 2>;
can easily be transformed into an unconditional axiom

<expression 1> ==
if <boolean expression>
then <expression 2>
else <expression 1>
end if;

Sec. 3.3 Notational Extensions 81

3.3.4 Case Constructs

Using case constructs, the number of axioms can sometimes be
considerably reduced. A case construct has the following syntactic form:

<case construct> =
"case" <case index> "of"
(<case arm>)+
U]

["otherwise" ":" <expression> ";"]
"end" "case”

<case index> = <expression>

<case arm> = <choice> "" <expression> ";

<choice> = <expression>

The case index and the choices of the different case arms of a case
construct must be of the same sort. An example of case constructs is given
in Fig. 3/10, also the use of otherwise is illustrated. The meaning of case
constructs is straightforward.

module Stack;
import Bool, true, false from Bool;
Nat, zero from Nat;
export all;
sort Stack;
operations
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;
declare s, s;: Stack; n: Nat;
axioms
isnewstack(s) ==
case s of
newstack: true;
otherwise: false;
end case;
pop(s) ==
case s of
newstack: newstack;
push(sy, n): sq;
end case;
top(s) ==
case s of
newstack: zero;
push(sy,-n):n;

82 An Algebraic Specification Language Chap. 3

end case;
end module Stack;

Fig. 3/10

3.3.5 Let Constructs

The readability can be enhanced by introducing a let construct, which has
the form:

<let construct> =
“let"
<let arm>
He W
in
<let expression>
"end" "let“

<let arm> = <variable> "==" <expression> ";

<let expression> = <expression>

with the variable and the expression of the let arm being of the same sort.
The sort of the let expression is the sort of the let construct. The meaning
of the let construct is the same as that of the expression obtained by
replacing in the given let expression all free occurrences of the variable of
the let arm by the expression of the let arm.

Also a multiple let construct is possible:

<let construct> =
lllet"
(<letarm>)+
"in"
<let expression>

"end" "let"

<let arm> = <variable> "==" <expression> ";"

<let expression> = <expression>
A multiple let construct has the same meaning as the nesting of the

corresponding single let constructs. For instance, Fig. 3/11 is equivalent to
Fig. 3/12.

Sec. 3.3

let x; == <expression 1>;
Xy == <expression 2>;

X, == <expression n>;
in
< let expression >
end let

Fig. 3/11

let x; == <expression 1>;
in
let x, == <expression 2>;
in
let x, == <expression n>;
in
<let expression>
end let
end let
end let

Fig. 3/12

Notational Extensions 83

An example of the use of a let construct is given in the term of Fig.
3/13, which has the same meaning as the term of Fig. 3/14.

declare ny, ny: Nat; s, sy: Stack;

let ny; == top(s);
ny == top(pop(s));
s1 == pop(pop(s));
in
push(push(sy, ng), ny)
end let

o

Fig. 3/13

84 An Algebraic Specification Language Chap. 3

declare s: Stack;

i);l;h(push(pop(pop(s)), top(s)), top(pop(s)))

Fig. 3/14

3.3.6 Qualified Names and Renaming

To avoid name conflicts, a sort or an operation name can be qualified by its
module name. An example is given in Fig. 3/15.

module;
import z from X;
1, u, z from Y;
. Xz ...
eee Yz ...
end module;

Fig. 3/15

If a sort or an operation is imported from another module, it can be
given a more appropriate name. A rename clause has the following

syntactic form:

<rename clause> = "rename"
<item name> "as" ("identifier" | <pattern>) (""
<item name> "as" ("identifier" | <pattern>))*

<item name> = <sort name> | <operation name>
<sort name> = "identifier" | "qualified identifier"

<operation name> = "identifier" | "qualified identifier" | <pattern>

<pattern> = (<token> I"_")+

An example is given in Fig. 3/16.

Sec. 3.3 Notational Extensions 85

module;
import Bool, true, false, _ and _ from Bool
rename
true as waar,
false as onwaar,
_and _as _en_;

end module;

Fig. 3/16

3.4 Parameterized Specifications

In the previous sections we studied the stacks of natural numbers. We
may specify stacks of booleans, stacks of natural numbers, and even stacks
of stacks of natural numbers. It is rather tedious to repeat a stack
definition for each new stack with a different sort of stack elements.
Indeed, all those definitions hardly depend on the sort of the elements.

For this reason we introduce the notion of scheme. Intuitively speaking,
a scheme is a meta-language function that at every call (instantiation) with
the appropriate number of abstract data types (actual modules) using a
parameter morphism (parameter binding mechanism), results in new
abstract data types. A scheme has the following syntactic form:

<scheme> =
"scheme" <scheme name> ["[" (<requirement>)+"]"]";"
(<module>)+
"end" "scheme" [<scheme name>]";"

After the scheme name follow the requirements (if any) enclosed in
square brackets. These requirements are said to be claimed by the scheme.
Requirements can be seen as formal modules of the scheme, with which
actual modules will be bound when an instantiation of the scheme is made.
A requirement states that sorts and/or operations in the actual modules of
an instantiation must satisfy some syntactic and semantic properties. This
is in contrast with Ada [Ada83] where only a syntactic interface for
generic packages can be required. A requirement has a syntax analogous to
that of a module.

86 An Algebraic Specification Language Chap. 3

<requirement> =

"requirement” [<requirement name>]";"
[<import clause>]
[<export clause>]
[<sorts part>]
[<operations part>]
[<declarations part>]
[<axioms part>]

"end" "requirement" [<requirement name>]";"

As an example, a scheme for a stack is given in Fig. 3/17. In this simple
example the claimed requirement is a syntactic interface only, i.e. the
requirement does not contain any axiom. More complex examples will be
given later.

scheme StackScheme [
requirement Item;
export all;
sort Item;
operation
error: -> Item;
end requirement Item;

I3

module Stack;

import Bool, true, false from Bool;
all from Item;

export all;

sort Stack;

operations
newstack: -> Stack;
push: Stack * Item -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Item;

declare s: Stack; it: Item;

axioms
isnewstack(newstack) == true;
isnewstack(push(s, it)) == false;
pop(newstack) == newstack;
pop(push(s, it)) ==s;
top(newstack) == error;
top(push(s, it)) ==it;

end module Stack;
end scheme StackScheme;

Fig. 3/17

Sec. 3.4 Parameterized Specifications 87

An instantiation has the following syntax:

<instantiation> =
"instantiate” <scheme name> [<rename clause>]";"
("with" <requirement name> "as" <module name> [(","
<item name> "as" <item name>)*]";"
W
X

"end" "instantiate” [<scheme name>]";

<item name> = <sort name> | <operation name>

After the keyword with a claimed requirement (formal module) is
bound with a module (actual module). First, the name of the claimed
requirement is bound with the name of the module. Afterwards, the
(formal) sorts and operations of the claimed requirement are bound with
the (actual) sorts and operations of the module. In Fig. 3/18 StackScheme
is instantiated.

instantiate StackScheme;
with Item as Nat,
Item as Nat,
€ITOT 3§ Zero;
end instantiate StackScheme;

Fig. 3/18

For this instantiation the requirement Item is bound with the module
Nat in the following way: the formal parameter Item is bound with the
actual sort Nat and the formal parameter error is bound with the actual
operation zero. The instantiation of Fig. 3/18 is equivalent to Fig. 3/19.

module Stack;

import Bool, true, false from Bool;
Nat, zero from Nat;

export all;

sort Stack;

operations
newstack: -> Stack;
push: Stack * Nat -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Nat;

declare s: Stack; it: Nat;

axioms

88 An Algebraic Specification Language Chap. 3

isnewstack(newstack) == true;
isnewstack(push(s, it)) == false;
pop(newstack) == newstack;
pop(push(s, it)) ==s;
top(newstack) = zero;
top(push(s, it)) == it;

end module Stack;

Fig. 3/19

In Fig. 3/20 a scheme for an array is given. Two requirements are
claimed, one for the indices and one for the attributes of the array. The
requirement Index serves not only as a syntactic but also as a semantic
interface, i.e. the requirement contains axioms. The required semantic
properties of the equality operation are reflexivity, symmetry and
transitivity.

scheme ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

requirement Index;
import Bool, true, _and __from Bool;
export all;
sort Index;
operation
_ = _:Index * Index -> Bool;
declare i, iy, iy, i3: Index;

axioms
i=i == true;
=0 == Ip=i;
(i1=i2)and(i2=i3)=>(i1=i3) == true;

end requirement Index;

)

module Array;

import Bool, true, false, not __ from Bool;
all from Attribute, Index;

export all;

sort Array;

operations
empty: -> Array;
_[_7 _1J Array * Attribute * Index -> Array;
isundefined: Array * Index -> Bool;
read: Array * Index -> Attribute;

declare ar: Array; i, i, ip: Index; at, at;, aty: Attribute;

Sec. 3.4 Parameterized Specifications 89

axioms
not(iy =iy)= arlaty /iy [aty /iy J==ar[aty /iy J[at; /i1
ar[aty /i][aty/i]l==ar[at,/i];
isundefined(empty, i) == true;
isundefined(ar[at/i;], i) ==
if iy =iy
then false
else isundefined(ar, i)
end if;
read(empty, i) == error;
read(ar[at/iy], ip) ==
if iy =i,
then at
else read(ar, iy)
end if;
end module Array;
end scheme ArrayScheme;

Fig. 3/20

In Fig. 3/21 an instantiation of ArrayScheme is given. We assume that
a module Iden of identifiers, containing the identifier undefined, and a
module Bool have been specified. The requirement Index is bound with the
module Nat, the requirement Attribute is bound with the module Iden.
The instantiation makes sense since the requirements are met, i.e. the
syntactic interfaces are met and the axioms of the requirement Index are
satisfied by the actual parameters. Indeed, the reflexivity, symmetry and
transitivity of the operation __= _: Nat * Nat -> Bool can be proved using
equational reasoning and induction.

module Nat;
import Bool, true, false from Bool;
export all;
sort Nat;
operations
zero: -> Nat;
succ: Nat -> Nat;
__=_:Nat* Nat -> Bool;
declare n, n;, n,: Nat;
axioms
Zero = zero == true;
zero = succ(n) == false;
suce(n) = zero == false;
succ(ny) =succ(np) == n; = ny;
end module Nat; '

instantiate ArrayScheme;
with Index as Nat,
Index as Nat,

90 An Algebraic Specification Language Chap. 3

—=as =
with Attribute as Iden,
Attribute as Iden,
error as undefined;
end instantiate ArrayScheme;

Fig. 3/21

Import Restrictions

Anywhere outside a scheme one must not import from the modules of the
scheme nor from the requirements claimed by the scheme. Also, claimed
requirements of a scheme must not import from the modules of the
scheme.

Before explaining the parameter passing mechanism in more detail, we
will define parameter morphisms.

3.4.1 Parameter Morphisms

A parameter morphism m from the claimed requirements Ry, Ry, ..., R; of a
scheme S to modules M;, M, ..., M; consists of two families of mappings
{my, mp, ... m }and { my, m,, ... m,, }, with m, being a mapping
from all sorts defined in R, to sorts defined in or imported by M,, and
with m, being a mapping from all operation names defined in R, to the
operation names defined in or imported by M,, such that

A. the rank of the operations is preserved:

a. for each nullary operation s; defined in a requirement R, as
sit => Sy, we have m, (s): -> my(S;) with m(S;,) defined
as

o if S; was defined in a requirement Ry, then m,(§;) =
e otherwise m,(§;) =§;

b. for each nonnullary operation s; defined in a requirement R, as
sii Sy * S, * .. * S, -> S, we have m. (s): mi(S;)*
mg(S,) *... *my(S;,)-> my(S;,) with m; as defined above

B. the axioms are preserved: for each axiom T; == T, in a requirement

R, the axiom m(T;) == m(T,) is satisfied by module M,, with
m(T) recursively defined as:

Sec. 3.4 Parameterized Specifications 91

a. for each nullary operation s;: -> §;, we have m(s;) = my(s;)
with m,(s;) defined as

o if 5; was defined in a requirement Ry, then m,(s) =
myo(S;)

e otherwise m,(s;) =s;

have m(8 Ty, Ty, . Te)) = my(s,) mC Ty), m(Tp s oo
m(Ty))

c. for each variable x of sort S; we have m(x) = x” with x’ being
of sort my(S;)

b. for each nonnullary operation s;: §;; * §;, * ... * §;, -> Sij we

Notice that each claimed requirement corresponds to one module only.
Parameter morphisms are defined in such a way that the modularity of the
requirements is preserved.

3.4.2 Instantiations

Standard Parameter Passing

We now come to the problem of parameter passing. The problem of
parameterized parameter passing, whereby the actual parameters are sorts
and/or operation names defined in the modules or the claimed
requirements of a scheme, will be treated in Section 3.4.7.

Instantiation Constraint

The parameter binding mechanism, which allows us to replace all
occurrences of the formal parameters of a scheme (i.e. the sorts and
operation names defined in the claimed requirements of the scheme) by
their corresponding actual parameters (i.e. the sorts and operation names
listed after the keywords as in an instantiation), must be a parameter
morphism. This is called the instantiation constraint. For instance, in Fig.
3/21, the binding of the requirements Index and Attribute to respectively
the modules Nat and Iden, forms a parameter morphism. This morphism
consists of {{(Index, Nat)}, { (Attribute, Iden)}} and {{(_=_.
=)}.{Cerror, undefined) } }. It preserves the rank of the operations

—=.Index* Index -> Bool;

92 An Algebraic Specification Language Chap. 3

error: -> Attribute;
since

__=_:Nat * Nat -> Bool;
undefined: -> Iden;

The axioms are preserved as well since

declare i’, iy, i,", i3’: Nat;

axioms
i'=1i == true;
i =0 =i =iy
(i]_’ = iz.) and (iz' = i3') > (il’ = i3') == true;

can be proved using equational reasoning and induction.

Equivalent Specification

The result of an instantiation is defined in terms of equivalent modules.
Given a scheme S containing modules SM; and given an instantiation of the
scheme S, the instantiation is equivalent to the modules SM; obtained as
follows. Each module SM;’ is derived from SM; by replacing the "all ..."
and "all except ..." parts in the import and export clauses by explicit lists
and consecutively replacing all occurrences of formal parameters by the
actual parameters as indicated by the parameter morphism.

From now on, a specification may contain modules, schemes and
instantiations. If all instantiations of a specification are replaced by their
equivalent modules and the schemes are eliminated, we obtain its
equivalent specification. The abstract data types defined by a specification
are the abstract data types defined by its equivalent specification.

As an illustration, consider the example of the Array in Fig. 3/21. The
instantiation of Fig. 3/21 is equivalent to the specification of Fig. 3/22.

module Array;

import Bool, true, false, not _ from Bool;
Nat, _ = _ from Nat;
Iden, undefined from Iden;

export all;

sort Array;

operations
empty: -> Array;

Sec. 3.4 Parameterized Specifications 93

_[_7 _1 Array * Iden * Nat -> Array;
isundefined: Array * Nat -> Bool;
read: Array * Nat -> Iden;
declare ar: Array; i,i;, i: Nat; at, aty, aty: Iden;
axioms
not(iy =i)=> ar[aty /iy J[aty /iy J==ar[aty, /iy 1[aty /ig J;
ar[aty/i]laty/il==ar[at,/i];
isundefined(empty, i) == true;
isundefined(ar[at/ iy], i,) =
if iy =i,
then false
else isundefined(ar, i,)
end if;
read(empty, i) == undefined;
read(ar[at/i; J,ip) ==
if ig = iy
then at
else read(ar, i,)
end if;
end module Array;

Fig. 3/22

If sorts or operations defined in an instantiation are needed elsewhere
outside the instantiation, they must be imported from the equivalent
modules. Assume, e.g., the operation isundefined that is defined by the
instantiation of Fig. 3/21, is needed in a module, then the operation
isundefined must be imported from the equivalent module Array that was
shown in Fig. 3/22.

Modules can be interpreted as special cases of schemes: a module is a
scheme that has no claimed requirements (thus no formal parameters) and
that is immediately instantiated.

It is important to notice that instantiating schemes is quite different in
nature from importing sorts or operations. If schemes are instantiated,
new abstract data types are defined. But if sorts and operations are
imported, existing abstract data types are used (shared).

3.4.3 Requirements and Induction

It is important to notice that induction (see Section 2.17) must not be used
to derive new axioms for sorts defined in requirements. Intuitively
speaking, these sorts are in fact formal parameters that will not necessarily
be bound by the parameter mechanism with a termalgebra of their
(formal) operations.

Take sort Attribute of the requirement Attribute, see Fig. 3/20; we
could prove by induction that

94 An Algebraic Specification Language Chap. 3

declare at,, at,: Attribute;
axiom
atl == at,; — 0 -

Indeed, we have no induction conclusion and only one induction base

axiom
error == error; -1--

which can be derived by means of the reflexivity rule of equational
reasoning. It is clear that such reasoning by induction does not make any
sense.

3.4.4 Remarks on Hierarchical Constraints

A specification is hierarchical if and only if its equivalent specification is
hierarchical. For instance, the specification of Fig. 3/21 is hierarchical
because the equivalent specification, which was given in Fig. 3/22, is
hierarchical. An example of a specification which is not hierarchical is
shown in Fig. 3/23, where StackScheme is instantiated with Item as Array,
and ArrayScheme is instantiated with Attribute as Stack.

instantiate StackScheme;
with Item as Array,
Item as Array,
error as empty;
end instantiate StackScheme;

instantiate ArrayScheme;
with Index as Nat,
Index as Nat,
—=_a_=_;
with Attribute as Stack,
Attribute as Stack,
error as newstack;

end instantiate;

Fig. 3/23

Our specification language allows non-hierarchical specifications to be
built. Although non-hierarchical specifications can be very useful, we
must_keep in_mind that we cannot benefit from the additional safety
obtained by verifying hierarchical constraints.

Sec. 3.4 Parameterized Specifications 95

A hierarchical specification (containing modules, schemes and
instantiations) is said to meet the hierarchical constraints if its equivalent
specification meets the hierarchical constraints (see Section 3.2) and if no
scheme may cause violations of the hierarchical constraints for any
possible instantiation.

We now give three rules of thumb for detecting schemes that may
violate the hierarchical constraints for some of their instantiations. In this
way, a number of pathological cases may be detected before any
instantiation has come into existence.

1
oo~ Consider the requirements of a scheme as modules. Then, the

requirements must meet the first hierarchical constraint (no confusion).

Consider the specification of Fig. 3/24.

scheme S [
requirement R;
import all from Bool;

sort X;
operations
x:-> X;
f: X -> Bool;
axioms
f(x) == true;
f(x) == false;

end requirement R;

J7

end scheme S;

Fig. 3/24

If the requirement R is considered as a module, the first hierarchical
constraint (no confusion) is violated since we can prove by equational
reasoning that

axiom
true == false;

Although the terms true and false cannot be proved to be equal by

96 An Algebraic Specification Language Chap. 3

equational reasoning in module Bool, they can after the addition of the
requirement R considered as a module. Clearly, requirement R can never
be bound by a parameter morphism with an actual module that meets the
hierarchical constraints.

Notice that in the formulation of this rule of thumb only the first
hierarchical constraint is mentioned, not the second one. Indeed, if we
consider the requirement R of Fig. 3/25 as a module, the second
hierarchical constraint is not met because, e.g, f(zero) cannot be reduced
to true or false. However, the hierarchical constraints will not be violated
at instantiation.

scheme S [
requirement R;
import Bool from Bool; Nat from Nat;
operation
f: Nat -> Bool;
end requirement R;

I3

end scheme X;

Fig. 3/25

2
mr Consider the requirements of a scheme as modules. Then, the

modules defined in the scheme must meet the hierarchical constraints.

If we consider in Fig. 3/26 the requirement R as a module, the terms f
and g cannot be proved to be equal by equational reasoning, but after the
addition of module M they can. Therefore, the first hierarchical constraint
(no confusion) is violated.

Indeed, if we instantiate scheme S of Fig. 3/26 by binding the
requirement R with the module Bool, sort X with Bool, f with true and g
with false, the equivalent module would violate the first hierarchical
constraint.

scheme S [
requirement R;
export all;
sort X;

Sec. 3.4

operations
f:-> X;
g->X;
end requirement R;

I

module M;
import X, f, g from R;

end module M;
end scheme S;

Fig. 3/26

Parameterized Specifications 97

Another example is shown in Fig. 3/27. If we consider the requirement
R as a module, module M violates the second hierarchical constraint (no
junk), since a new object, denoted by the nullary operation c, of sort X is
defined and it cannot be proved to be equal to a or b.

scheme S [
requirement R;
export all;
sort X;
operations
a,b:->X;
end requirement R;

o
»

module M;
import all from R;
export all;
operation
c->X;
end module M;
end scheme S;

Fig. 3/27

3

oo Select one of the requirements of a scheme, we call it R. Try to add
axioms to the requirement R in such a way that R considered as a module
does not violate the first hierarchical constraint (no confusion). Then the
other requirements (of the scheme) considered as modules and the modules

98 An Algebraic Specification Language Chap. 3

of the scheme must not violate the first hierarchical constraint with
respect to R. This process must be repeated for every requirement.

As an illustration of this rule of thumb, consider the scheme S in Fig.
3/28. If we add the axiom

axiom

to requirement R, requirement R considered as a module does not violate
the first hierarchical constraint. However, module M does not meet the
first hierarchical constraint any more after the addition.

scheme S [
requirement R;
export all;
sort X;
operations
a, b:-> X;
end requirement R;

)
module M;

operation
f: X -> Bool;
axioms
f(a) == true;
f(b) == false;
end module M;
end scheme S;

Fig. 3/28

Indeed, if we bind the formal sort X with Nat and both a and b with
zero, the module equivalent to this instantiation would violate the first
hierarchical constraint.

In general, verifying the hierarchical constraints is a very hard job. In
Chapter 4 a subset of specifications will be considered for which they can
be verified easily.

Sec. 3.4 Parameterized Specifications 99

3.4.5 Renaming and Qualified Names

If a scheme is instantiated more than once, name conflicts may occur.
Therefore, it is possible to rename for an instantiation the modules, sorts
and operations defined in or claimed by the scheme. The renaming
mechanism is analogous to the renaming in import clauses. In Fig. 3/29 the
instantiation of Fig. 3/18 is extended with a renaming clause.

instantiate StackScheme
rename
Stack as Numbertable,
newstack as inittable,
push as entertable,
isnewstack as isinittable,
pop as leavetable,
top as retrievetable;
with Item as Nat,
Item as Nat,
€ITOT as Zero;
end instantiate StackScheme;

Fig. 3/29

The equivalent module is given in Fig. 3/30. Notice that both the module
name Stack and the sort name Stack have been renamed to Numbertable.

module Numbertable;

import Nat, zero from Nat;
Bool, true, false from Bool;

export Numbertable, inittable, entertable, leavetable, retrievetable, isinittable;

sort Numbertable;

operations
inittable: -> Numbertable;
entertable: Numbertable * Nat -> Numbertable;
leavetable: Numbertable -> Numbertable;
retrievetable: Numbertable -> Nat;
isinittable: Numbertable -> Bool;

declare s: Numbertable; it: Nat;

axioms
isinittable(inittable) == true;
isinittable(entertable(s, it)) == false;
leavetable(inittable) == inittable;
leavetable(entertable(s, it)) ==s;
retrievetable(inittable) == zero;
retrievetable(entertable(s, it)) == it;

100 An Algebraic Specification Language Chap. 3

end module Numbertable;

Fig. 3/30

Renaming makes it possible to define, e.g., a stack of stacks of natural
numbers, see Fig. 3/31.

instantiate StackScheme
rename
Stack as StackNat,
newstack as newstackNat,
push as pushNat,
isnewstack as isnewstackNat,
pop as popNat,
top as topNat;
with Item as Nat,
Item as Nat,
€ITOT 35 Zero;
end instantiate StackScheme;

instantiate StackScheme
rename
Stack as StackStackNat,
newstack as newstackStackNat,
push as pushStackNat,
isnewstack as isnewstackStackNat,
pop as popStackNat,
top as topStackNat;
with Item as StackNat,
Item as StackNat,
error as newstackNat;
end instantiate StackScheme;

Fig. 3/31

In general, a rename clause has the following syntax:

<rename clause> = "rename"
(<item name> | <element name>) "as" ("identifier" | <pattern>)
(G
(<item name> | <element name>) "as" ("identifier" | <pattern>)
N p
*

<item name> = <sort name> | <operation name>

<element name> =
<module name> | <scheme name> | <requirement name>

Sec. 3.4 Parameterized Specifications 101

In the example of Fig. 3/32 sorts and operation names are qualified
with the module (or requirement) name they are imported from in order to
avoid name conflicts.

module Victim;
import Iden from Iden;
Nat from Nat;

export all;

operations
name, street, village: ->Iden;
number, zip: -> Nat;

end module Victim;

module Criminal;
import Iden from Iden;
Nat from Nat;

export all;

operations
name, street, village: ->Iden;
number, zip: -> Nat;

end module Criminal;

module Crime;
import all from Victim, Criminal;
... Victim.name...
... Criminal.name...

end module Crime;

Fig. 3/32

3.4.6 Partial Instantiations

Consider a scheme S with requirements Ry, , ..., Rxp, R4 17 o
of the requirements Ry, ;. ... Ry, is directly nor indirectly imported by the
requirements Ry,. ..., Ry,. a partial instantiation is possible. A partial
instantiation is an instantiation in which the formal parameters of the
requirements Ry, ..., Ry, only, are replaced by the actual parameters as
explained by the partial parameter morphism. A partial parameter

.» Ry,. If none

102 An Algebraic Specification Language Chap. 3

morphism is a parameter morphism from part of the requirements of a
scheme, preserving the rank of the operations and preserving the axioms.
The result of a partial instantiation is a new scheme. Therefore, a partial
instantiation is only allowed on places where schemes are allowed. Partial
instantiations are very useful in software design, since they enable the
construction of new schemes from existing ones.

The ArrayScheme of Fig. 3/20 is partially instantiated in Fig. 3/33 by
binding the requirement Index to the module Nat.

instantiate ArrayScheme rename ArrayScheme as NatArrayScheme;
with Index as Nat,
Index as Nat,
_=_as_=_;
end instantiate;

Fig. 3/33

The resulting scheme is equivalent to Fig. 3/34.

scheme NatArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

module Array;
import Bool, true, false, not __ from Bool;
all from Attribute; Nat, _ = _ from Nat;
export all;
sort Array;
operations
empty: -> Array;
_[_7 _X Array * Attribute * Nat -> Array;
isundefined: Array * Nat -> Bool;
read: Array * Nat -> Attribute;
declare ar: Array; i, i, i;: Nat; at, at;, aty: Attribute;
axioms
not(i1 =i2)$’ ar[atl/il][atz/i2]==ar[at2/i2][atl/il];
ar[aty/illaty/i]l==ar[aty/i};
isundefined(empty, i) == true;
isundefined(ar{at/i;], i) =
if iy =iy

Sec. 3.4 Parameterized Specifications 103

then false
else isundefined(ar, i,)
end if;
read(empty, i) == error;
read(ar[at/i], ip) ==
if iy =i,
then at
else read(ar, iy)
end if;
end module Array;
end scheme NatArrayScheme;

Fig. 3/34

3.4.7 Parameterized Parameter Passing

This section treats the problem of parameterized parameter passing, with
the actual parameters being sorts and/or operation names defined in the
modules or the claimed requirements of a scheme.

We defined a parameter morphism as two families of mappings from
the claimed requirements Ry, R,. ..., R, of a scheme S to modules M;, M,,
... M. If a scheme S is instantiated within another scheme §’, each
requirement Ry’ of S’ may be used as a module My for the parameter
morphism in the instantiation of S.

As an example we want to insert the scheme ArrayScheme (with Index
and Attribute as requirements), which was defined in Fig. 3/20, into the
scheme StackScheme (with Item as requirement), which was defined in Fig.
3/17, resulting in the new scheme StackArrayScheme (with Index and
Attribute as requirements). Of course, the meaning of the resulting scheme
depends on the parameter passing mechanism between the two schemes.
The skeletons of the schemes StackScheme and ArrayScheme and the
resulting scheme StackArrayScheme are given below.

scheme StackScheme [
requirement Item;
export all;
sort Item;
operation
error: -> Item;
end requirement Item;

module Stack;

. --see Fig. 3/17
end module Stack;

104 An Algebraic Specification Language

end scheme StackScheme;

scheme ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

requirement Index;
import Bool, true, _ and __ from Bool;
export all;
sort Index;
operation
_ = _:Index * Index -> Bool;
declare i, i3, iy, i3: Index;
axioms
i=1 == true;
=iy == ip=1iy
(i1=i2)and(i2=i3)=> (i1=i3) == true;
end requirement Index;

7

module Array;
... --see Fig. 3/22
end module;
end scheme ArrayScheme;

scheme StackArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

requirement Index;
import Bool, true, __and _ from Bool;
export all;
sort Index;
operation
__=_:Index * Index -> Bool;
declare i, iy, i, i3: Index;

axioms
i=1i == true;
=0 == ip=1p;
(i1=i2)and(i2=i3)$(i1=i3) == true;

end requirement Index;

i

instantiate ArrayScheme;
with Index as Index,
Index as Index,

=8 _=_

Chap. 3

Sec. 3.4 Parameterized Specifications 105

with Attribute as Attribute,
Attribute as Attribute,
€TTOT as error;
end instantiate ArrayScheme;

instantiate StackScheme;
with Item as Array,
Item as Array,
error as empty,
end instantiate StackScheme;
end scheme StackArrayScheme;

Fig. 3/35

Notice that the morphism of the instantiation of ArrayScheme maps the
requirements Index and Attribute of ArrayScheme to the requirements
Index and Attribute of StackArrayScheme.

The equivalent scheme of StackArrayScheme is given in Fig. 3/36.

scheme Stack ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

requirement Index;
import Bool, true, __and _ from Bool;
export all;
sort Index;
operation
= _:Index * Index -> Bool;
declare i, iy, iy, i3: Index;

axioms
i=i == true;
i1=i2 == i2=i1;
(iy=ip)and(ip =iz)= (iy =iz) == true;

end requirement Index;

iy

module Array;

import Bool, true, false, not _ from Bool;
all from Attribute, Index;

export all;

sort Array;

operations
empty: -> Array;
L/ _ 1] Array * Attribute * Index -> Array;
isundefined: Array * Index -> Bool;
read: Array * Index -> Attribute;

106

An Algebraic Specification Language

declare ar: Array; i, iy, ip: Index; at: Attribute;
axioms
not(iy =iy)= ar[at; /i I[aty /iy]==ar[at,
ar[aty /i][aty/i]==ar[at,/i];
isundefined(empty, i) == true;
isundefined(ar[at/iy], ip) ==
if i; =iy
then false
else isundefined(ar, i)
end if;
read(empty, i) == error;
read(ar[at/iy], ip) ==
if iy = i
then at
else read(ar, i)
end if;

end module Array;

module Stack;

import Array, empty from Array;
Bool, true, false from Bool;
export all;
sort Stack;
operations
newstack: -> Stack;
push: Stack * Array -> Stack;
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Array;
declare s: Stack; a: Array;
axioms
isnewstack(newstack) == true;
isnewstack(push(s, a)) == false;
pop(newstack) == newstack;
pop(push(s,a)) ==s;
top(newstack) == empty;
top(push(s,a)) ==a;

end module Stack;
end scheme StackArrayScheme;

/iz][atl/il];

Fig. 3/36

Stack ArrayScheme has been instantiated in Fig

instantiate Stack ArrayScheme;
with Index as Nat,

— — — —
with Attribute as Iden,

Index as Nat,
= as =

Attribute as Iden,
error as undefined;

. 3/317.

Chap. 3

Sec. 3.4 Parameterized Specifications 107

end instantiate StackArrayScheme;

Fig. 3/37

Instead of combining the two schemes into a new scheme and then
instantiating it, we can also first instantiate ArrayScheme and then
instantiate StackScheme with its result. This has been done in Fig. 3/38.

instantiate ArrayScheme;
with Index as Nat,
Index as Nat,
—_=_a8_=_;
with Attribute as Iden,
Attribute as Iden,
error as undefined;
end instantiate ArrayScheme;

instantiate StackScheme;
with Item as Array,
Item as Array,
error as empty;
end instantiate StackScheme;

Fig. 3/38

Both approaches yield the same results. Although the composition of
schemes is a parameterized composition (because it depends on the
parameter morphisms), it makes sense to speak of a composition. Actually
the composition of schemes behaves like the usual composition of functions
where we have associativity, i.e. f 0 (g 0 h) = (f 0 g) o h, and compatibility
with evaluation, i.e. (f 0 g) (x) = f(g(x)) [Ehrig84, Ehrig85].

3.4.8 Parameterizing Requirements

Analogous to the parameterization of a group of modules, a group of
requirements can be parameterized in exactly the same way. An example
is shown in Fig. 3/39.

scheme SomeOperationRequirementScheme [
requirement Item;
export all;
sort X;

108 An Algebraic Specification Language Chap. 3

end requirement Item;
y

requirement SomeQOperation;
import X from Item;
export error;
operation

error: -> X;
end requirement SomeQOperation;
end scheme SomeOperationRequirementScheme;

scheme Y [
requirement Objects;
export Things;
sort Things;
end requirement Objects;

instantiate SomeQOperationRequirementScheme;
with Item as Objects,
X as Things;
end instantiate;

end scheme Y;

Fig. 3/39

In the given example the scheme SomeOperationRequirementScheme has
been parameterized by the requirement Item. In scheme Y the scheme
SomeOperationRequirementScheme is instantiated with requirement
Objects. The result of the instantiation is a requirement SomeOperation
where a nullary operation is requested. In Fig. 3/40 an equivalent
specification is given.

scheme Y [
requirement Objects;
export Things;
sort Things;
end requirement Objects;

requirement SomeQOperation;
import Things from Objects;
export error;
operation
error: -> Things;
end requirement SomeOperation;

I3

end scheme Y;

Fig. 3/40

Sec. 3.4 Parameterized Specifications 109

Scheme SomeOperationRequirementScheme of Fig. 3/39 may also be
instantiated as is shown in Fig. 3/41, where the requirement Item is bound
with a module.

scheme Z [
instantiate SomeOperationRequirementScheme;
with Item as Nat,
X as Nat;
end instantiate;
3

end scheme Z;

Fig. 3/41

Fig. 3/41 is equivalent to Fig. 3/42.

scheme Z [
requirement SomeQOperation;
import Nat from Nat;
export error;
operation
error: -> Nat;
end requirement SomeOperation;

I3

end scheme Z;

Fig. 3/42

Using schemes of requirements, Fig. 3/35 can be rewritten as in Fig. 3/43.

scheme ItemRequirementScheme;
requirement Item;
export all;
sort Item;
operation
error: -> Item;
end requirement Item;
end scheme ItemRequirementScheme;

scheme StackScheme [instantiate ItemRequirementScheme; end instantiate; J;

110 An Algebraic Specification Language

module Stack;
... --see Fig. 3/17
end module Stack;
end scheme StackScheme;

scheme AttributeRequirementScheme;
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;
end scheme AttributeRequirementScheme;

scheme IndexRequirementScheme;
requirement Index;
import Bool, true, __and _ from Bool;
export all;
sort Index;
operation
=:Index * Index -> Bool;
declare i, i, iy, i3: Index;

axioms
i=i == true;
iy =ip == ip=1iy;
(iy=iy)and (ip =iz) > (i; =iz) == true;

end requirement Index;
end scheme IndexRequirementScheme;

scheme ArrayScheme [
instantiate AttributeRequirementScheme; end instantiate;
instantiate IndexRequirementScheme ; end instantiate;]
;
module Array;
-- see Fig. 3/22
end module;
end scheme ArrayScheme;

scheme StackArrayScheme [
instantiate AttributeRequirementScheme; end instantiate;
instantiate IndexRequirementScheme; end instantiate; L
;

instantiate ArrayScheme;
with Index as Index,
Index as Index,
—_— = — as — =
with Attribute as Attribute,
Attribute as Attribute,
error as error;
end instantiate ArrayScheme;

Chap. 3

Sec. 3.4 Parameterized Specifications 111

instantiate StackScheme;
with Item as Array,
Item as Array,
error as empty;
end instantiate StackScheme;
end scheme StackArrayScheme;

Fig. 3/43

In this section we have shown that the idea of parameterization as it has
been applied to groups of modules can be applied to groups of requirements
as well, resulting in a very orthogonal language definition. Even a mixed
group of modules and requirements can be parameterized. In Section 4.10
we will discuss where such a mixed group of requirements and modules
does make sense.

3.5 Clusters

As mentioned in Section 3.1.1, a specification forms a directed graph.
Making this graph acyclic is not always possible because of mutual
recursivities between the abstract data types. Collecting the modules of
the specification into one big module would reduce the readability. An
example of recursivity can be found in the algebraic specification of Karel
The Robot [Lewi85b]. A selected part is given in Fig. 3/44. The module
Commands defines the different commands of the robot, which are
executed in a certain environment. The module Environment makes use of,
among others, a library of newly defined commands. In module Library a
library is defined as a mapping from identifiers to commands. The import
of the modules Commands, Environment and Library is recursively
defined.

module Position;
import...;
export Pos, forward to Commands;...
sort Pos;
operations
makePosition: . .. -> Pos;
forward: Pos -> Pos;

end module Position;

module Library;
import Com from Commands;

112 An Algebraic Specification Language

Iden from Identifiers;
export Lib to Environment, Commands;
sort Lib;
operations

newlib: -> Lib;

addlib: Lib * Iden * Com -> Lib;

end module Library;

module Environment;
import Lib from Library;...
export Env, makeEnv to Commands; ...
sort Env;
operations
makeEnv:...*Lib*...-> Env;

end module Environment;

module Commands;

import Env, makeEnv from Environment;
Pos, forward from Position;
Lib from Library;...

export Com to Library;...

sort Com;

operations
move, turnieft: -> Com;

C: Com * Env -> Env;
declare pos: Pos; 1lib: Lib;
axioms
C(move, makeEnv(pos, ..., lib,...)) ==

end module Commands;

... makeEnv(forward(pos), ..., lib,...) ..

Fig. 3/44

The recursive dependencies between the

Chap. 3

Commands,

Environment and Library are inherent in the specified problem. The cyclic
graph of modules can be transformed into a hierarchy of modules by
grouping the mutually recursive modules into one supermodule, called
cluster. A cluster is a simple packing of individual modules involved in a

loop in a directed graph. A cluster has the following syntax:

<cluster> =
"cluster" [<cluster name>]";"

(<module> | <instantiation> | <requirement>)+

"end" "cluster” [<cluster name>]";"

An example of a cluster is shown in Fig. 3/45.

Sec. 3.5

module Position;
import...;
export Pos, forward to Commands;...
sort Pos;
operations
makePosition: . .. -> Pos;
forward: Pos -> Pos;

end module Position;
cluster Robot;

module Library;
import Com from Commands;
Iden from Identifiers;
export Lib to Environment, Commands;
sort Lib;
operations
newlib: -> Lib;
addlib: Lib * Iden * Com -> Lib;

end module Library;

module Environment;
import Lib from Library; ...

sort Env;
operations
makeEnv:...*Lib*...-> Env;

end module Environment;
module Commands;

Pos, forward from Position;

Lib from Library;...
export Com to Library; ...
sort Com;
operations

move, turnleft: -> Com;

C: Com * Env -> Env;
declare pos: Pos; lib: Lib;
axioms

end module Commands;

end cluster Robot;

export Env, makeEnv to Commands;...

import Env, makeEnv from Environment;

C(move, makeEnv(pos, ..., lib,...)) ==
... makeEnv(forward(pos), ..., 1ib,...)..

Fig. 3/45

Clusters 113

114 An Algebraic Specification Language Chap. 3

3.6 Bibliographic Notes

Modularity and Hierarchical Specifications

Since the early beginning of algebraic specifications, most abstract data
types described in literature have been of a hierarchical nature. In
[Goguen78] a classification of techniques is given.

e An abstract data type that does not use other abstract data types and is
defined without axioms, is called a fundamental type.

e If a new module that imposes further axioms on an already existing
abstract data type is added, the resulting type is called the quotient of
the old one. E.g., set can be defined as a quotient of bag. Notice that
this violates our first hierarchical constraint.

e If abstract data types are enriched with new operations meeting our
hierarchical constraints, but no new sorts are defined, it is called an
enrichment.

o If both new operations and new sorts meeting our hierarchical
constraints are defined, it is called an extension.

e A new type can also be defined as n-tuples of existing abstract data
types. This is called tupling of types.

Using the terminology of [Goguen78], if the hierarchical constraints are
met, the existing abstract data types are said to be protected.

If a hierarchy meets our first hierarchical constraint, it is called
consistent in [Ehrig85], whereas a hierarchy that meets our second
hierarchical constraint is called complete. Generally, the problem of
whether the hierarchical constraints are met is undecidable [Ehrig85].

[Futatsugi85] calls a module protecting if it meets our hierarchical
constraints, it is called extending if it meets our first hierarchical
constraint, and it is called using otherwise.

In [Nakajima80] an algebraic specification language, called iota, is
proposed. In iota a program consists of a tree-like hierarchy of modular
components. OQur modules and schemes correspond to their type modules
and procedure modules, our requirements correspond to their sype modules.

In [Bergstra85] a graphical notation for hierarchies of modules and
schemes, called structured diagrams, is proposed. Each module (scheme) is
represented by a rectangular box. The name of each module (scheme) is
shown at the bottom of its box. All modules imported by a module

Sec. 3.6 Bibliographic Notes 115

(scheme) X are represented by structure diagrams inside the box
representing X. All requirements of a scheme are represented by ellipses
carrying their names. For instance, the structure diagram of the scheme
Stack of Fig. 3/17 is given in Fig. 3/46.

Bool

Stack

Fig. 3/46

An instantiation is represented by lines joining the requirements of the
scheme to the modules in which the corresponding actual parameters are
defined. For instance, the module StackNat of Fig. 3/18 is defined by
binding the requirement Item to the module Nat. This is shown in Fig.
3/47.

Nat

Bool

Stack

StackNat

Fig. 3/47

Our import and export clauses were based on the import clauses of
Modula-2 [Wirth82].

The need for a cluster structure has appeared in [Lewi85b]. The
recursive nature of sorts and operations makes the use of a hierarchy of
modules impossible there.

116 An Algebraic Specification Language Chap. 3

Notational Extensions

In most articles ifthenelse constructs are used as built-in operations.
Conditional axioms are used in [Laut83] and in OBJ [Goguen84c,
Futatsugi85]. The mixfix notation was first introduced for algebraic
specifications in the iota language [Nakajima80] and the OBJ language
[Goguen82, Goguen84c, Futatsugi85]. Case and let constructs are
frequently used in functional programming languages.

Parameterized Specifications

Although the first publications on algebraic specifications already used
parameterized specifications, theoretical studies originally did not treat
generics [Goguen78, Guttag78a]. The first fundamental contributions to
the theory of parameterized specifications were [Ehrig78, Thatcher78,
Burstall80]. A standard work is [Ehrig85], where the semantics of a
parameterized specification are defined as a free functor, which is a
fundamental concept in category theory [Hilton74, Goldblatt79]. In
[Enrig84, Ehrig85] it is proved that

o the actual parameters are protected if parameter morphisms are used

e the composition of schemes is associative and compatible with
evaluation.

In [Ganzinger81] it is also shown that most of the results concerning
parameter passing treated with initial algebras can be transmitted in the
framework of final algebras.

Our ideas about (parameter) morphisms, standard parameter passing
and parameterized parameter passing are based on [Ehrig84]. Notice that
we did not modify the mathematical foundations defined in Chapter 2.
Actually, we treat parameterization as a kind of macro-substitution.

ACT ONE

ACT ONE (Algebraic Specification Techniques for Correct and Trusty
Software Systems) is an algebraic specification language developed at the
Technical University in Berlin by Hartmut Ehrig and Bernd Mahr
[Ehrig85]. An example is given in Fig. 3/48.

In ACT ONE the concept of combination is useful to combine
specifications or to add sorts or operations to a given specification such that
a hierarchy is built. It is analogous to our import clause mechanism of
Section 3+1:1:In Fig.-3/49 the specifications of nat and bool are extended
with the specification of the stack.

Sec. 3.6 Bibliographic Notes 117

def nat is
sorts nat
opns
0: -> nat
SUCC: nat -> nat
ADD: nat nat -> nat
eqns of sort nat
for all n, m in nat:
ADD(n,0)=n
ADD(n, SUCC(m)) =SUCC(ADD(n,m))
end of def

Fig. 3/48

def stack is nat and bool

sorts stack

opns
EMPTY: -> stack
PUSH: stack nat -> stack
ISEMPTY: stack -> bool
TOP: stack -> nat
POP: stack -> stack

eqns of sort bool
ISEMPTY(EMPTY) = TRUE

end def

Fig. 3/49

In ACT ONE a scheme is called a parameterized specification and an
instantiation is called an actualization. An example of a parameterized
specification is shown in Fig. 3/50.

def parstack is
formal sorts data
formal opns error: -> data
sorts stack
opns
EMPTY: -> parstack

end of def

Fig. 3/50

118 An Algebraic Specification Language Chap. 3

OBJ

In the specification language OBJ2 [Goguen84c, Futatsugi85] an analogous
parameterization mechanism is provided. Requirements are called theories
and morphisms are called views. If no ambiguity rises, default views are
possible by only indicating to which module a theory is mapped. Also
parameterized theories may be used. Parameterizing a theory is in fact
claiming another requirement and importing from this requirement. OBJ2
differs from our algebraic specification language in that in OBJ2 only one
module can be parameterized, whereas our schemes may contain several
modules.

The OBJ family of algebraic specification languages has been developed
by the group of Goguen. It was originally based on the specification
language Clear [Burstall77]. The oldest member of this family is OBJO,
later called OBJT [Goguen79]. OBJ1 was a significant improvement by
including associative-commutative rewriting [Goguen83]. The main
characteristic of OBJ2 is the concept of subsorts. At the moment, OBJ3 is
being developed [Goguen87c]. OBJ2 has also an object-oriented version,
called FOOPS [Goguen86]. A combination of equational logic of OBJ with
the Horn clause logic of Prolog resulted in Eqlog [Goguen 84d].

A very typical feature of OBJ2 is the concept of subsorts [Futatsugi85,
Goguen85, Goguen87b]. One sort of data is often contained in another, e.g.,
the natural numbers are contained in the integers. Then the sort Nat is a
subsort of Int, written as Nat < Int. Moreover, an operation may restrict
to subsorts of its rank and still be "the same" operation [Futatsugi85]. For
example, the addition operation __ + _: Nat Nat -> Nat is a restriction of
—+ _:IntInt -> Int.

The following specification introduces the sort Int of integers with the
subsort Nat of natural numbers. Furthermore, the non-zero natural
numbers are a subsort of the natural numbers and a subsort of the non-
zero integers which in turn are a subsort of the integers, see Fig. 3/51.

obj INT is
sorts NzNat Nat NzInt Int.
subsorts NzNat < Nat < Int.
subsorts NzNat < Nzlnt < Int.
op 0:-> Nat.
op s__: Nat-> NzNat.
op -__:Nat-> Int.
op —__: NzNat -> Nzint.
op _+__:IntInt -> Int[assoc comm id: 0]
op _*_ :IntInt-> Int[assoc comm]
vars U V : Nat.
var X : Int.
vars A B: NzNat.
eq:-0=0.

Sec. 3.6 Bibliographic Notes 119

eq: X+0=X.
eq:W+EV)=ssU+V).
eq:-sW+EV)=C+V.
eq:(-sM+(CsV)=-ss(U+V).
eq:X*0=0.
eq:X*sV=X*V+X.
eq:X*-sV=-(X*V+X).

jbo

Fig. 3/51

An object (abbreviated obj) is a module containing executable code
[Futatsugi85]. This object is called INT. The nullary operation O denotes a
natural number. The result of the successor operation s__ is a non-zero
natural number. The unary operation -__returns a (non-zero) integer if its
argument is a (non-zero) natural number. Finally, the addition and
multiplication operations are declared. The attribute assoc indicates that
an operation is associative, and id: 0 indicates that it has O as an identity.
After the keywords var and vars variables are declared. Axioms are given
after the keywords eg.

Although the logic of subsorts can be reduced to standard equational
logic (i.e. based on many-sorted initial algebras) using coercing functions
[Goguen85, Futatsugi85], a new mathematical foundation, called order-
sorted algebra approach, is proposed in [Goguen85, Futatsugi85s,
Goguen87b].

4. Constructive Specifications

"Abstraction and specification must be the linchpins
of any effective approach to programming.”
Barbara Liskov and John Guttag

Roughly speaking, constructive specifications are specifications that can
always be directly implemented, enabling rapid prototyping. An
important benefit from making constructive specifications is that it enables
software designers and customers to get user feedback and hands-on
experience with the system before the implementation gets started. In this
way, design errors due to misunderstandings between designers and
customers, as well as lack of understanding of service mechanisms can be
detected and corrected at an early stage in the software life cycle. With
constructive specifications, the boundaries between specification and
implementation are not very sharp. Both may be considered as programs,
but the former is of a higher level of abstraction (i.e. less implementation
details) than the latter. So, making constructive specifications is
comparable to writing programs. As for programming, not only insight
but also discipline and style are necessary. Here, the style consists of
dividing the operations into two groups, one for data abstractions
(constructors) and one for procedural abstraction (non-constructor
operations). The constructors provide us with a system of canonical
forms. The axioms are considered as a left-to-right term rewriting system
that reduces terms containing non-constructor operation names to terms
built up of constructor names only. By introducing constraints of
uniqueness and completeness, which can be checked mechanically, the
chance of writing erroneous specifications can be reduced considerably. In
this way, software correctness can be enhanced up to a large extent.
Constructive specifications have the advantage over non-constructive
ones that they always give rise to rapid prototyping. However, non-
constructive specifications often are of a higher level of abstraction than
their constructive versions and, therefore, are more appropriate for system
documentation purposes. It is our personal conviction that in a first step
one has to try to construct a specification without considering any
constructivity constraint. If we obtain a specification that is non-
constructive; werbuildrasconstructive version of it in a second step. Some
of the axioms found in the first step are then added to the constructive
specification as provable theorems, representing valuable documentation of

Sec. 4.0 121

the system properties. As already mentioned, non-constructive
specifications do not always form a left-to-right term rewriting system.
However, they are very valuable in the early stages of the software life
cycle when we only have some ideas about operation properties but are yet
unable to describe them constructively. We must keep in mind that we
probably aim at an implementation where we must eventually give
algorithms. So eventually non-constructive specifications have to be
replaced step by step by constructive ones.

Furthermore, constructor axioms are considered. A limited use of
constructor axioms gives rise to semi-constructive specifications. Although
constructor axioms cannot always be considered as pure left-to-right term
rewriting rules, semi-constructive specifications can be directly
implemented, enabling rapid prototyping.

One of the advantages of formal specification languages over traditional
programming languages is that semantic properties (in the form of
theorems) can be required from the actual parameters when parameterized
specifications are used. In this chapter a three-step method to build such
semantic interfaces is presented. The method is illustrated by means of an
abstract data type defining geometric functions.

4.1 Simple Example

In this section we introduce the notions of constructors, non-constructor
operations and constructivity by means of a simple example. The exact
definitions will be given in Section 4.2.

Consider the specification of stacks in Fig. 4/1. It differs from the
specification given in Fig. 3/17 in that the operations of module Stack are
divided into two groups: constructors and non-constructor operations. In
Fig. 4/1 the constructors are newstack and push whereas the non-
constructor operations are isnewstack, pop and top. With the constructors
we can generate all the objects of the abstract data type Stack and each
object of the abstract data type can be denoted by just one constant term
built up of newstack and push only. Non-constructor operations describe
the functional behaviour of the objects of the abstract data type Stack.
They are defined in terms of the constructors.

scheme StackScheme [
requirement Item;
export all to Stack;
sort Item;

122

I3

module Stack;

end module Stack;
end scheme StackScheme;

Constructive Specifications

operation
error: -> Item;
end requirement Item;

import Bool, true, false from Bool; Item, error from Item;
export all;
sort Stack;
constructors
newstack: -> Stack;
push: Stack * Item -> Stack;
operations
isnewstack: Stack -> Bool;
pop: Stack -> Stack;
top: Stack -> Item;
declare s: Stack; it: Item;
operation axioms
isnewstack(newstack) == true;
isnewstack(push(s, it)) == false;
pop(newstack) == newstack;
pop(push(s, it)) ==s;
top(newstack) == error;
top(push(s, it)) == it;

Fig. 4/1

Chap. 4

The operation axioms of Stack can be seen as rules of a left-to-right
term rewriting system that reduces variable-free terms containing non-
constructor operation names to canonical forms built up of constructor
names only. As an example, if StackScheme is instantiated by binding the
requirement Item with a module defining natural numbers, the term

pop(push(pop(push(push(newstack,5),7)),.9))

can be reduced to

push(newstack, 5)

which is a canonical form. Notice that from now on we write, e.g., 5
instead of succ(succ(succ(succ(succ(zero))))).
Another example is the term

isnewstack(pop(push(pop(push(newstack,5)),7)))

which is reduced to

true

Sec. 4.1 Simple Example 123

By using the operation axioms as left-to-right term rewriting rules,
each non-constructor operation applied to the appropriate arguments can be
symbolically executed yielding the answer in a canonical form. As we will
see in Section 4.2, in order to use specifications as left-to-right term
rewriting systems, the specification has to meet a number of constraints,
called constructivity constraints. Constructive specifications are important
for rapid prototyping.

Notice that from now on we use the term operation axiom(s) and the
keyword operation axiom(s), in order to distinguish this kind of axioms
from constructor axioms, which will be defined in Section 4.6.

4.2 Constructive Specifications

We recall that in our terminology a specification consists of modules,
instantiations and schemes (schemes consist of requirements, modules and
instantiations), whereas an equivalent specification only consists of
modules, see Section 3.4.2.

Constructor and Non-Constructor Operations

The operations are divided into two groups: constructors and non-
constructor operations. Constructors are operations that are chosen so that
every congruence class of the initial algebra contains a constant term built
up of constructor names only. The constructors provide us with a system
of canonical forms. Distinguishing between constructors and non-
constructor operations is in fact distinguishing between data abstraction
and procedural abstraction. Intuitively speaking, -constructors are
operations that generate objects of the abstract data type whereas non-
constructor operations, called operations for short, rather describe the
functional behaviour of the objects.

Constructiveness Constraints

A specification is said to meet the constructiveness constraints if for each
module of the specification the following conditions hold:

1. The left-hand side of each axiom starts with a non-constructor
operation name that is defined in the same module, and all proper
subterms of the left-hand side are built up of variables and
constructor-names-only-—Furthermore, the choices of case arms are
built up of variables and constructor names only.

124 Constructive Specifications Chap. 4

2. A variable occurs at most once at the left-hand side of an axiom or in
the choice of a case arm.

3. Only variables that are used at the left-hand side of an axiom, may
be used at the right-hand side of the axiom. There are two
exceptions: the variable introduced by a let construct may also be
used in its let expression, and the variables introduced by the choice
of a case arm may also be used in the corresponding expression.

4. Conditional axioms (see Section 3.3.3) are not allowed. But ifthenelse
constructs are available as explained in Section 3.3.1.

5. All constructors of a sort must be defined in the module defining the
sort.

These constraints can easily be checked in a mechanical way
[Goovaerts84, Van Puymbroeck84].

Uniqueness and Completeness Constraints

Consider a specification within which a non-constructor operation is
defined. The specification is said to meet the unigueness and completeness
constraints with respect to that non-constructor operation, if the left-hand
sides of the axioms for the non-constructor operation cover its domain
exactly once.

A specification is said to meet the uniqueness and completeness
constraints with respect to a case construct, if the choices of the case arms
of the case construct cover its domain exactly once.

A specification is said to meet the unigueness and completeness
constraints, if the specification (e.g., Fig. 4/1) meets these constraints with
respect to each non-constructor operation and to each case construct. Also
the uniqueness and completeness property can easily be checked in a
mechanical way [Van Puymbroeck84].

Terminating Specifications

A specification (consisting of modules, schemes and instantiations) is
terminating if the equivalent specification is terminating and if no scheme
may be responsible for producing non-terminating specifications for any
possible correct instantiation. An equivalent specification is terminating if
no variable-free term can be reduced infinitely using the axioms as left-
to-right term rewriting rules.

Sec. 4.2 Constructive Specifications 125

We now give a rule of thumb for detecting schemes that may be
responsible for producing non-terminating specifications for some of their
instantiations.

o Given a scheme consisting of requirements and modules. We apply
the definition of termination to these modules, considering each variable of
a sort defined in one of the requirements as a constructor name of that
sort.

In general, the termination of the reduction process cannot be checked
mechanically, unless if, e.g., only structural recursion [Boyer79, Bevers85,
Bevers87] is used. The specification of Fig. 4/1 uses no recursion at all,
and it is easy to check that the reduction process always terminates.

Constructive Specifications

A specification is constructive if the constructiveness, uniqueness and
completeness constraints are met and if it is terminating. This property is
called constructivity.

Notice that every congruence class of the initial algebra of a
constructive specification contains just one constant term built up of
constructor names only. A very interesting property is that the
hierarchical constraints in constructive specifications are automatically
met.

4.3 Theorems

Axioms of a non-constructive specification can be considered as theorems
for the corresponding constructive specification. Strictly speaking,
theorems in modules are redundant information with respect to the
axioms, but they play an important role in the documentation to better
understand specifications and to gain confidence that the specifications
express what we have in mind. Theorems can be proved using equational
reasoning and induction, see Chapter 2.

In Fig. 3/8 a non-constructive specification for the abstract data type of
boolean values was given. In Fig. 4/2 we give a constructive specification
of this data type. The remaining axioms of Fig. 3/8 are added as theorems.

126 Constructive Specifications Chap. 4

module Bool
export all;
sort Bool;
constructors
true, false: -> Bool;
operations
not _: Bool -> Bool;
__and _: Bool * Bool -> Bool;
__or _: Bool * Bool -> Bool;
__=> _: Bool * Bool -> Bool;
__ <= _:Bool * Bool -> Bool;
__<=> _:Bool * Bool -> Bool;
declare b, by, b,, bs: Bool;
operation axioms
not true == false; not false == true;
band true=="b; b and false == false;
b or true == true; b or false == b;
true=> b=="b; false => b==true;
b<=true==b; b <={false== true;
true <=> b=="b; false <=> b==notb;
theorems
bandb==b; borb==";
b; and by ==b; and b;; b; or by == by or by;
bland(blorb2)==b1; blor(blandb2)=b1;
b and not b == false; b or not b == true;
notnotb=="b;
(by and by) and by == by and (by and b3);
(by or by) or by == by or (by or b3);
by and (by or by) == (by and b,) or (by and by);
b; or (by and by) ==(b; or by) and (by or b3);
by => by == if b; then b, else true end if;

by <=by == by => by;
by <=> by == (bl => by) and (bl <= bz);
end module Bool;
Fig. 4/2

In our example of Fig. 4/2, the choice of constructors is
straightforward. The operation axioms, however, can be constructed in
many different ways. In the given specification the constructiveness,
uniqueness and completeness constraints are met. This can be checked
mechanically. Because the specification of Fig. 4/2 is also terminating, it is
constructive.

Notice that the axioms of a requirement (e.g.. Fig. 3/20) are not
involved in the left-to-right term rewriting process. They only represent
some conditions that must be met by the actual parameters to meet the
instantiation constraints. They are in fact theorems, see Fig. 4/3. In these
cases;pinsteadof the keywordgsaxiom(s), we will write the keyword
theorem(s) to indicate that the axioms are not taken into account for the

Sec. 4.3 Theorems 127

constructiveness, uniqueness and completeness constraints and for the
termination. Notice also that a requirement must not define formal
constructors but only formal operations. The formal operations can be
bound with actual constructors as well as with actual operations.

scheme ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
error: -> Attribute;
end requirement Attribute;

requirement Index;
import Bool, true, _ and __from Bool;
export all;
sort Index;
operation
__=_:Index * Index -> Bool;
declare i, iy, iy, i3: Index;

theorems
i=1i == true;
iy =iy == =iy
iy =iy and iy =iz > i; =iz == true;

end requirement Index;

J3

module Array;

import Bool, true, false, not __ from Bool;
all from Attribute, Index;

export all;

sort Array;

constructors
empty: -> Array;
_[_7 _1 Array * Attribute * Index -> Array;

operations
isundefined: Array * Index -> Bool;
read: Array * Index -> Attribute;

end module Array;
end scheme ArrayScheme;

Fig. 4/3

128 Constructive Specifications Chap. 4

4.4 Equality Operation

The equalities of the congruence relations defined by the axioms can be
simulated by user-defined equality operations. This is illustrated in Fig.
4/4 for the natural numbers.

module Nat;

import Bool, true, false, __and _ from Bool;
export all;
sort Nat;
constructors

zero: -> Nat;

succ: Nat -> Nat;
operation

=:Nat* Nat -> Bool;
declare n, n;, njy, nz: Nat;
operation axioms

zero = suce(n) == false;
ZEro = Zero == true;
succ(n) = zero == false;
suce(ng) =succ(ny) == n; =ny;
theorems
n=n == true; --reflexivity
n; =Ny == Ny =1np; --symmetry
(ny=n3)and(ny3=n3)=> ny =nz == true; -- transitivity

end module Nat;

Fig. 4/4

It is important to notice the difference between some user-defined
equality operation and the equality of the congruence relation of the initial
algebra. In Fig. 4/5 an abstract data type containing an equality operation
is specified in such a way that the objects denoted by a and b are different
(i.e. they do not belong to the same congruence class) although the equality
operation __ = __indicates them as equal.

sort X;
constructors
a:-> X;
b -> X;

Sec. 4.4 Equality Operation 129

operation
=:X*X-> Bool;
declare x;, x5: X;
operation axiom
X1 = X == true;

Fig. 4/5

4.5 Example

In Fig. 4/6 a generic specification is given for the data type List.
Comments are added to explain the meaning of the constructors and
operations in an informal way.

scheme ListScheme [
requirement Item;
import Bool, true, __and __ from Bool;
export all;
sort Item;
operations
undefined: -> Item;
__ = _:Item * Item -> Bool;
declare it, it,, ity, its: Item;

theorems
it=it == true; -- reflexivity
ity =ity == ity =ity; -- symmetry
(ity =ity Yand (ity =itz) > ity =its == true; -- transitivity

end requirement Item;

»

module List;

import all from Bool, Item;

export all;

sort List;

constructors
nil: -> List; -- denotes the empty List
__| _:Ttem * List -> List; --adds Item to List

operations
head: List -> Item; -- returns the first Item of List
tail: List -> List; -- returns all but the first Item of List
_ & _:List* List -> List; -- appends the first List to the second List
delete: Item * List -> List; -- deletes the last occurrence of Item (if any) in List
remove: List * List -> List; -- deletes in the second List the last occurrence of

-- each Item which is enumerated in the first List

_ isin _:Item * List -> Bool; -- indicates whether Item is a member of List
_ partof _: List * List -> Bool; -- indicates whether each item of the first List

130 Constructive Specifications

-- has at least the same number of occurrences in the second List
permutation: List * List -> Bool; -- indicates whether the two given Lists
-- are permutations
declare it, ity, ity: Item; 1list, list;, listy: List;
operation axioms
head(nil) == undefined;
head(it | nil) == it;
head(ity | ity | list) == head(it; | list);
tail(nil) == nil;
tail(it | nil) == nil;
tail(ity | ity | list) == ity | tail ity | list);
nil & list == list;
(it listy) & listy == it 1 (listy & listy);
delete(it, nil) == nil;
delete(ity, ity | list) ==
if it = ity
then list
else it | delete(ity, list)
end if;
remove(nil, list) == list;
remove(it | listy, list,) == remove(list;, delete(it, listy));
it isin nil == false;
ity isin ity 1 list ==
if ity =ity
then true
else ity isin list
end if;
nil partof list == true;
itl | 1iSt1 partof listy ==
if ity isin list,
then list; partof delete(ity, list,)
else false
end if;
permutation(listy, listy) == (list; partof listy) and (list, partof list;);
end module List;
end scheme ListScheme;

Chap. 4

Fig. 4/6

4.6 Constructor Axioms

The need for constructor axioms can best be explained through a simple
example. Consider the abstract data type Set that contains an empty set &,
the operation { __} to create a singleton, the operations insert and delete to
put an item into or delete it from the set respectively, the operations __ U

and _ N __ to take the union and the intersection of two sets

respectively;-and.the operation:isin to test whether an item belongs to a set.

The operations part is shown in Fig. 4/7.

Sec. 4.6 Constructor Axioms 131

operations
&: -> Set;
{ _}:Item -> Set;
insert, delete: Item * Set -> Set;
U _:Set*Set-> Set;
__ N _:Set*Set-> Set;
isin: Item * Set -> Bool;

Fig. 4/7

In the next step we have to choose the constructors. Many solutions are
possible. Mathematicians usually choose @, { _ } and _ U _ as
constructors. Programmers like to use & and insert. Still other
combinations are possible. The complete scheme SetScheme is shown in
Fig. 4/8, in which @ and insert are chosen as constructors. The non-
constructor operations are delete, { __}, _ U _, _ N _ and isin. They are
defined by describing their effect on terms built up of constructor names

and variables only.

scheme ItemRequirementScheme;
requirement Item;
import Bool, true, __and _ from Bool;
export all;
sort Item;
operation
=:Item * Item -> Bool;
declare it, ity, it,, ita: Item;

theorems
it =it == true;
itl = itz == it2 = itl;
(ity = itz) and (i'tz = it) > itl = its == 1true;

end requirement Item;
end scheme ItemRequirementScheme;

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; J;
module Set;
import Bool, true, false from Bool;
all from Item;
export all;
sort Set;
constructors
@: -> Set;
insert: Item * Set -> Set;
operations
delete: Item * Set -> Set;
{ __}:Item -> Set;

132 Constructive Specifications Chap. 4

_ U _:Set*Set-> Set;
N _:Set* Set-> Set;
isin: Item * Set -> Bool;
declare s, sy, s5: Set; it, ity, ity: Item;
operation axioms
delete(it, @) ==&;
delete(ity, insert(ity, s)) ==
if ity = ity
then delete(ity, s)
else insert(it,, delete(it;,s))
end if;
{it} == insert(it, @);
sU@==s;
s; U insert(it, s,) = insert(it, s; U'sy);
sN@==0;
sy N insert(it, s5) ==
if isin(it, sy)
then insert(it,s; N sy)
else s; N sy
end if;
isin(it, @) == false;
isin(ity, insert(ity, s)) ==
if ity =ity
then true
else isin(ity, s)
end if;
end module Set;
end scheme SetScheme;

Fig. 4/8

Although this specification seems to define the abstract data type Set, it
does not meet the following two important properties:

e the order of the insertions is irrelevant:

insert(it,, insert(itp, s)) == insert(it,, insert(it;, s));

e an inserted item may be added more than once without changing the set:
insert(it, insert(it, s)) == insert(it, s);

We have an analogous problem if other operations are chosen as
constructors, e.g., @, { _} and _ U _, see Fig. 4/9.

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; J;
module Set;
import Bool, true, false, _ or _ from Bool;

Sec. 4.6

all from Item;
export all;
sort Set;
constructors
. -> Set;
{ _}: Item -> Set;
__ U _:Set* Set-> Set;
operations
insert: Item * Set -> Set;
delete: Item * Set -> Set;
_ N _:Set* Set-> Set;
isin: Item * Set -> Bool;
declare s, s, 552 Set; it, itg, ity: Item;
operation axioms
insert(it,s)=={it} Us;
delete(it, @) = ;
delete(ity, { ity }) ==
if ity =ity
then @
else { it }
end if;
delete(it, s; U 55) == delete(it, s;) U delete(it, s,)
sN@=g;
snN{it}=
if isin(it, s)
then { it}
else @
end if;
sN(s; Usy)==(sNs;)U(sNsy);
isin(it, @) == false;
isin(itl, { itz }) =
if ity =ity
then true
else false
end if;
isin(it, s; U s5) = isin(it, 5,) or isin(it, s,);
end module Set;
end scheme SetScheme;

Constructor Axioms 133

Fig. 4/9

This specification does not meet the following important properties:

o O is the neutral element of the union function:

BUs=s, sUD==x5;

e the commutativity of the union function:

s; U sy ==s, U syg;

134 Constructive Specifications Chap. 4

e the associativity of the union function:

S U(52 US3)==(S]_ USz)US3;

e and the idempotence of the union function:

sUs==s;

The properties given above are examples of constructor axioms. They
cannot be derived as theorems from the specification. Notice that the use
of such constructor axioms as left-to-right term rewriting rules would
cause a termination problem.

A constructor axiom of a module is an axiom whose left- and right-
hand side (but its condition if any) only consist of variables and
constructor names defined in this module and that has a left- (and right-)
hand side the sort of which is also defined in this module.

4.7 Semi-Constructive Specifications

Specifications containing constructor axioms do not meet the
constructiveness constraints and thus, strictly speaking, are not
constructive. This means that in general we cannot use such specifications
as a left-to-right term rewriting system for rapid prototyping purposes.
By imposing constraints on constructor axioms, rapid prototyping becomes
still possible. These constraints are called semi-constructivity constraints
and the specifications meeting these constraints are called semi-
constructive.

A specification is said to be semi-constructive if the following semi-
constructivity constraints hold:

e If the constructor axioms were deleted from the specification, the
specification would become constructive.

e Starting from an arbitrary term built up of variables and constructor
names of the specification, it is impossible to derive an infinite number
of literally different terms using the constructor axioms as left-to-right
term rewriting rules.

o The specification is ground confluent. A specification (consisting of
modules, schemes and instantiations) is ground confluent if the
equivalent specification is ground confluent and if no scheme may be

Sec. 4.7 Semi-Constructive Specifications 135

responsible for producing specifications that are not ground confluent
for any possible correct instantiation.

An equivalent specification is ground confluent if the following
condition holds: If s, t; and t, are terms built up of constructor names
only, such that both t; and t, are derived from s using the constructor
axioms as left-to-right term rewriting rules, then there exists a term u
built up of constructor names only such that u can be derived from t;
as well as t; using the constructor axioms as left-to-right term
rewriting rules. This property, called ground confluence [Huet80], is
graphically represented in Fig. 4/10.

S
A
tl t2
u
Fig. 4/10

We now give a rule of thumb for detecting schemes that may be
responsible for producing specifications that are not ground confluent for
some of their instantiations.

w Given a scheme consisting of requirements and modules. We apply
the definition of ground confluency to these modules, considering each
variable of a sort defined in one of the requirements as a constructor name
of that sort.

By introducing semi-constructive specifications, a limited form of local
non-constructivity is allowed. For each module, this non-constructivity
(if any) is usually localized in a small number of constructor axioms. In
general, the semi-constructivity constraints cannot be checked
mechanically. In Fig. 4/11 the semi-constructive specification for sets is
based on Fig. 4/8.

scheme SetScheme [instantiate ItemRequirementScheme; end instantiate; J;
module Set;
import Bool, true, false from Bool;
all from Item;
export all;
sort Set;

136 Constructive Specifications

constructors
D: -> Set;
insert: Item * Set -> Set;
operations
delete: Item * Set -> Set;
{ _):Item -> Set;
_ U _:Set*Set-> Set;
_ N _:Set* Set-> Set;
isin: Item * Set -> Bool;
declare s, sq, 85: Set; it, ity, ity: Item;
constructor axioms
insert(ity, insert(ity, s)) == insert(it,, insert(ity, s));
insert(it, insert(it, s)) == insert(it, s);
operation axioms
delete(it, &) == &;
delete(ity, insert(ity, s)) ==
if ity = it,
then delete(it;, s)
else insert(it,, delete(ity, s))
end if;
{it} ==insert(it, @);
sU@==s5s;
s; U insert(it, s,) == insert(it, s; U s5);
s N @ ==0;
sy N insert(it, s,) ==
if isin(it, sy)
then insert(it,s; N sp)
elses; N sy
end if;
isin(it, @) == false;
isin(ity, insert(ity, s)) ==
if ity = ity
then true
else isin(ity, s)
end if;
end module Set;
end scheme SetScheme;

Fig. 4/11

Chap. 4

To enable direct execution of semi-constructive specifications, the non-
termination of the reduction process must be intercepted. A possible
solution is one based on the run with memory option used in the OBJ1 and
OBIJT systems [Goguen82, Futatsugi85, Goguen87c]. Constructor axioms
are only applied if no operation axiom can be applied. Intermediate terms
built up of constructor names only are remembered, and a constructor
axiom is prevented from being applied if it produces a term that has
already come up. The disadvantage of this method is a loss of efficiency in

time and/or space of the reductor system.

Another example of a semi-constructive specification is the array, see

Fig. 4/12.

Sec. 4.7 Semi-Constructive Specifications 137

scheme ArrayScheme [
instantiate AttributeRequirementScheme; end instantiate;
instantiate IndexRequirementScheme; end instantiate;
-- see Fig. 3/43
L

module Array;
import Bool, true, false, not _ from Bool;
all from Attribute, Index;
export all;
sort Array;
constructors
empty: -> Array;
_[_ 7/ _1 Array * Attribute * Index -> Array;
operations
isundefined: Array * Index -> Bool;
read: Array * Index -> Attribute;
declare ar: Array; i, i, ip: Index; at, at;, aty: Attribute;
constructor axioms
not(iy =iy)= ar[aty /iy J[aty /iy J==ar[aty /iy][aty /iy };
ar[aty/illaty/i]==ar[aty/i};
operation axioms
isundefined(empty, i) == true;
isundefined(ar[at/ iy], ip) ==
if iy =1
then false
else isundefined(ar, iy)
end if;
read(empty, i) == error;
read(ar[at/i;], ip) ==
if iy =1y
then at
else read(ar, i,)
end if;
end module Array;
end scheme ArrayScheme;

Fig. 4/12

The specification of Fig. 4/13 is not semi-constructive because starting
from, e.g., the term zero, it is possible to derive an infinite number of
literally different terms using the constructor axioms as left-to-right term
rewriting rules. Indeed, we obtain zero, succ(pre(zero)), succ(pre(succ(
pre(zero)))). ... The specification can be made semi-constructive by
interchanging the left- and right-hand side in each constructor axiom.

138 Constructive Specifications Chap. 4

module Integer;
export all;
sort Integer;
constructors
zero: -> Integer;
succ: Integer -> Integer;
pre: Integer -> Integer;
operations

declare i: Integer;

constructor axioms
i == suce(pre(i));
i == pre(succ(1));

operation axioms

end module Integer;

Fig. 4/13

An example of a specification that is not semi-constructive is given in
Fig. 4/14 [Mallgren82)]. If the sets of variable-free terms of sort Value and
of sort Point are both not empty (let us assume there is a term v of sort
Value and a term p of sort Point that are both built up of constructor
names only), then the specification of Fig. 4/14 is not ground confluent
and thus not semi-constructive. Indeed, the term

compose(compose(scale(v), translate(p)), scale(v))
can be reduced to
compose(scale(v), compose(translate(p), scale(v)))
using the first constructor axiom. But it can also be reduced to
compose(translate(v . p), scale(v*v))
using the fourth, the first and the second constructor axiom respectively.

There exists no term that can be derived from the two results using the
constructor axioms as left-to-right term rewriting rules.

module GeomF;
import Value, _* _ from Value; Point, _+ _, _._ from Point;
export all;
sort GeomF;

Sec. 4.7 Semi-Constructive Specifications 139

constructors
scale: Value -> GeomF;
translate: Point -> GeomF;
compose: GeomF * GeomF -> GeomF;
operations
declare gfy, gf,, gf3: GeomF; vy, vy: Value; py, py: Point;
constructor axioms
compose(compose(gfy, gf,), gfs) == compose(gf;, compose(gf,, gf3));
compose(scale(vy), scale(v;) 3 ==scale(v{ * v3);
compose(translate(p;), translate(p;)) == translate(p; + p3);
compose(scale(vy), translate(p;)) == compose(translate(vy . py), scale(vy));
operation axioms

end module GeomF;

Fig. 4/14

The first semi-constructivity constraint states that, if the constructor
axioms are deleted, the specification must be constructive and thus meet
the uniqueness and completeness constraints. If constructor axioms were
taken into account in the definitions of the uniqueness and completeness
constraints, these constraints could not be checked mechanically. Notice
also that the constructor axioms in a semi-constructive specification
contain redundant information with respect to the operation axioms. As an
example, consider the ArrayScheme of Fig. 4/12 which we instantiate by
binding the indices as well as the attributes with the natural numbers, the
term

isundefined(empty [1/2][2/3],2)

can be reduced in two different ways: the second operation axiom can be
applied two times consecutively or the first constructor axiom can be
applied and then the second operation axiom can be applied. Both give
false as result.

4.8 Inconsistency

If constructor axioms are added to a constructive specification, we must be
very careful not to violate the first hierarchical constraint, otherwise we
may obtain an inconsistent specification. Assume that the specification of
Fig. 4/11 contains the operation last as defined in Fig. 4/15.
Thespecificationisvinconsistent because the term last(insert(ity,
insert(it;, @))) where|it; and it, are different items, may be reduced to

140 Constructive Specifications Chap. 4

operation

last: Set -> Item;
declare it: Item; s: Set;
operation axioms

last(insert(it, s)) == it;

Fig. 4/15

it; as well as it depending on whether the constructor axiom is applied
before the operation axiom of Fig. 4/15.

In the next section a method for constructing requirements will be
discussed that results in consistent parameterized specifications.

4.9 On Constructing Requirements

One of the main advantages of formal specification languages over
traditional programming languages is the ability to provide not only
syntactic but also semantic interfaces between the various parts of a
system. Consider, e.g., generic packages in Ada [Ada83]; only syntactic
information (including types) can be required from the parameters. With
formal specifications also semantic properties (in the form of theorems)
can be required from the parameters.

In literature, however, most examples illustrating the parameterization
of formal specifications contain rather trivial interfaces. The interfaces
usually state that sorts and operations must be given. Semantic properties
are seldom required except for reflexivity. symmetry and transitivity of
the equality operations. This section describes a general method for
building semantic interfaces in parameterized formal specifications.
Moreover, the method is illustrated by means of an example dealing with a
non-trivial semantic interface.

The abstract data type GeomF, defining geometric functions, is specified
by the module GeomF in Fig. 4/16. A parameterized version of GeomF
will be given in Fig. 4/19. The abstract data type GeomF was used by
Mallgren [Mallgren82] for the description of graphical languages.
Examples of geometric functions are translations and scalings.
Furthermore, the composition of two geometric functions yields a new
geometric function. To limit the length of the example, we restrict
ourselves to translations and compositions. We assume that a module
Point_has been predefined with a sort Point, an origin and two operations

+ __and __ -

Sec. 4.9 On Constructing Requirements 141

The module GeomF defines the sort GeomF of geometric functions. It
has two constructors: translate and compose. The definition of the
operation identity is straightforward. The operation inverse returns the
inverse of a geometrical function. The ultimate goal is to apply the
geometric functions to points, therefore an operation transform is defined.
The meaning of the theorems is obvious.

We decided to define compose as a constructor and not as an operation,
as in [Mallgren82], where not only translations but also scalings are
defined. Then, a composition of a translation and a scaling is, in general,
neither a translation nor a scaling. In our example, compose is defined as a
constructor for reasons of extendibility of our example with scalings.

module GeomF;

import Point, origin, _ + _, _ - _ from Point;
export all;
sort GeomF;
constructors

translate : Point -> GeomF;

compose : GeomF * GeomF -> GeomF;
operations

identity : -> GeomF;

inverse : GeomF -> GeomkF;

transform : GeomF * Point -> Point;
declare p, p;, py: Point; gf, gfy, gfy, gf3: GeomF;
constructor axioms

compose(translate(p;), translate(p)) == translate(p; + p,); —cl
compose(compose(gfy, gfa), gfs) == compose(gfy, compose(gf,, gf3) J; -—c2
operation axioms
identity == translate(origin); —ol
inverse(translate(p)) == translate(origin - p); -—02
inverse(compose(gfy, gf,)) == compose(inverse(gf), inverse(gfy)); -o03
transform(translate(py), pa) == p; + p3; o4
transform(compose(gfy, gf,), p) == transform(gfy, transform(gf,, p)); --05
theorems
transform(identity, p) == p; —11
compose(identity, gf) == gf; —12
compose(gf, identity) = gf; —13
inverse(inverse(gf)) == gf; — 14
compose(gf, inverse(gf)) =~ identity; —~15
compose(inverse(gf), gf) == identity; -—16
end module GeomF;
Fig. 4/16

Points in [Mallgren82] are two-dimensional Cartesian coordinates. In
practice; points may also be n=dimensional Cartesian coordinates or polar

142 Constructive Specifications Chap. 4

coordinates. Therefore, parameterization of the module GeomF would
enhance its reusability. The syntactic part of the needed requirement, say
requirement Point, can be derived from the import clause of Fig. 4/16,
resulting in Fig. 4/17.

requirement Point;
export all;
sort Point;
operations
origin : -> Point;
_+__:Point * Point -> Point;
_-__: Point * Point -> Point;
theorems
. --semantic properties
end requirement Point;

Fig. 4/17

Stating the claimed semantic properties, i.e. constructing the theorems
of the requirement, is a non-trivial job. We will propose a three-step
method for constructing theorems of requirements. In a first step,
theorems are deduced by proving the consistency of the operation axioms
of the parameterized modules with respect to the constructor axioms.
Proving the ground confluence property of the scheme, in particular of the
constructor axioms of the parameterized modules, yields a second group of
theorems of requirements. In a third step, theorems of requirements are
derived from the theorems of the parameterized modules of the scheme.
Consequently, the obtained theorems of the requirements guarantee that
the constructor axioms and the operation axioms of the parameterized
modules are ground confluent and consistent respectively, and that the
theorems of the parameterized modules are always valid.

Theorems Deduced from the Consistency Property

By proving the consistency of the operation axioms of the parameterized
module with respect to its constructor axioms (see Section 4.8), a first
group of theorems for the requirement Point may be derived. Applying
the operation inverse to the left-hand side of each constructor axiom must
yield the same result as applying it to the corresponding right-hand side.
The same must be true for the operation transform.

Sec. 4.9 On Constructing Requirements 143

1. Operation inverse and constructor axiom c1:

a) inverse(compose(translate(p;), translate(p;)))
== compose(inverse(translate(p,).

inverse(translate(p;)))) -- see 03

== compose(translate(origin - p,), translate(origin - p;)) -- see 02

== translate((origin - p,) + (origin - p;)) -- see c1
b) inverse(translate(p; + p2))

== translate(origin - (p; +p2)) -- see 02

we (origin - p,) + (origin - p;) == origin - (p; + p2);
2. Operation inverse and constructor axiom c2:

a) inverse(compose(compose(gfy, gf,), gf3))

== compose(inverse(gf3), inverse(compose(gf;, gf2))) ~-see 03
== compose(inverse(gf3),

compose(inverse(gf), inverse(gf;))) -- see 03

b) inverse(compose(gf;, compose(gfa. gf3)))

== compose(inverse(compose(gf,, gf3)), inverse(gf;)) --see 03
== compose(compose(inverse(gfs).

inverse(gf,)), inverse(gf;)) -- see 03
== compose(inverse(gf3),

compose(inverse(gf,), inverse(gf;))) -- see c2

Both deductions yield the same result.
3. Operation transform and constructor axiom c1:

a) transform(compose(translate(p;), translate(p;)). p)
== transform(translate(p;).

transform(translate(p;). p)) -- see 05

== transform(translate(p;). (p2 +p)) -- see 04

=p1+(pz+p) -- see 04
b) transform(translate(p; + p2). p)

=(p1+p2)+p -- see 04

wrpr+(p2+p)==(p1+p2)+p:
4. Operation transform and the constructor axiom c2:

a) transform(compose(compose(gf;, gf2). gfa). p)
== transform(compose(gf;, gf,). transform(gf3. p)) -- see 05
== transform(gf;, transform(gf;, transform(gf3.p))) -- see 05
b) transform(compose(gf;. compose(gf>. gf3)). p)

144 Constructive Specifications Chap. 4

== transform(gf;, transform(compose(gf,, gf3). p)) -- see 05
== transform(gf;, transform(gf,, transform(gf3 .p))) -- see 05
Both deductions yield the same result.

Theorems Deduced from the Ground Confluence Property

Proving the ground confluence property of the scheme, in particular of the
constructor axioms of the parameterized modules (see Section 4.7), yields a
second group of theorems of requirements.

The minimal overlapping term between the left-hand sides of the
constructor axioms c1 and c2 is:

compose(compose(translate(p;), translate(p,)). gf)

Assume that every geometric function of Fig. 4/16 can be written as a
translation. Then, we can replace the variable gf in the minimal
overlapping term by the term translate(p;).

compose(compose(translate(p;). translate(p,)). translate(p3))

The rule of thumb of Section 4.7 says that if we consider p;. p, and p3
as constructor names of sort Point, the above term (built up of constructor
names only) must be reduced to the same result via both constructor
axioms.

compose(compose(translate(p;).
translate(p;)), translate(p3)) ==

a) compose(translate(p; + p), translate(p;)) --see cl

== translate((p; +p2) +p3) -- see c1
b) compose(translate(p;),

compose(translate(p,), translate(p3))) -- see c2

== compose(translate(p;), translate(p, + p3)) --see cl

== translate(p; + (p2 + p3)) --seecl

wrpy+(p2+p3)=Cp1+p2)+0ps:

In order to assert this suffices to prove the ground confluence of the
scheme, we still have to prove that every geometric function of Fig. 4/16
can be written as a translation. If we denote this property as istranslation(

Sec. 4.9 On Constructing Requirements 145

gf), it can be proved according to the following induction scheme

istranslation(translate(p))
istranslation(gf;) and
istranslation(gf,) => istranslation(compose(gf;. gf,))

induction base:
istranslation(translate(p))
== true -- see definition of istranslation
induction hypotheses:
istranslation(gf;) == true;
or gf; may be written as translate(p;)
istranslation(gf,) == true;
or gf; may be written as translate(p,)
induction conclusion:
istranslation(compose(gf;, gf2))
== jstranslation(compose(translate(p;) ., translate(p,))

-~ see ind. hyp.
== istranslation(translate(p; + p2)) --see cl
== true ~- see definition of istranslation

Theorems Deduced from the Theorems of the Scheme

In a last step, theorems of requirements are derived from the theorems of
the parameterized modules. We derive sufficient and necessary theorems
for the requirement Point so that the theorems of module GeomF are valid.
In order to prove
transform(identity, p) == p; -—-t1
transform(identity, p)
== transform(translate(origin), p) --see ol
== origin + p -~ see 04
we origin + p == p;
In order to prove

compose(identity, gf) == gf; - 12

we use induction over the variable gf according to the following induction

146 Constructive Specifications Chap. 4

scheme where theorem 2 is denoted as t2(gf)

t2(translate(p))
t2(gf;) => t2(compose(gf;, gf>))

induction base:
compose(identity, translate(p))

== compose(translate(origin), translate(p)) -- see o1
== translate(origin + p) --see cl
ow origin + p == p;

induction hypothesis.

compose(identity, gf;) == gf;;
induction conclusion:
compose(identity, compose(gf;, gf))
== compose(compose(identity, gf;), gf2) -~ see ¢2
== compose(gf;, gf,) -- see ind. hyp.

For the example of Fig. 4/16 a simpler proof of theorem 2 can be given
based on the property that every geometric function can be written as a
translation. We have given a proof that can easily be generalized if
scalings [Mallgren82] or rotations [Huyghe87] are introduced.

In order to prove

compose(gf, identity) == gf; --t3

we use induction over the variable gf according to the following induction
scheme where theorem 3 is denoted as t3(gf)

t3(translate(p))
t3(gf,) => 13(compose(gfy, gf2))

induction base:
compose(translate(p), identity)

== compose(translate(p), translate(origin)) -- see ol
== translate(p + origin) --seecl
o p + origin == p;

induction hypothesis:

compose(gf5, identity) == gf,;
induction conclusion:
compose(compose(gf;, gf,), identity)

Sec. 4.9 On Constructing Requirements 147

== compose(gf;, compose(gf;, identity)) -- see c2
== compose(gf. gf>) -- see ind. hyp.

In order to prove
inverse(inverse(gf)) == gf; --t4

we use induction over the variable gf according to the following induction
scheme where theorem 4 is denoted as t4(gf)

t4(translate(p)) |
t4(gf1) and t4(gf,) => t4(compose(gf;, gf>))

induction base:
inverse(inverse(translate(p)))

== inverse(translate(origin - p)) -- see 02
== translate(origin - (origin-p)) -- see 02
we origin - (origin - p) == p;

induction hypotheses:

inverse(inverse(gf;)) == gf;;
inverse(inverse(gf,)) == gf;
induction conclusion:
inverse(inverse(compose(gfy, gf2)))
== inverse(compose(inverse(gf;), inverse(gf;))) -- see 03
== compose(inverse(inverse(gf;)), inverse(inverse(gf;)))

-~ see 03
== compose(gf;, gf,) -- see ind. hyp.

In order to prove
compose(gf, inverse(gf)) == identity; -5

we use induction over the variable gf according to an induction scheme
similar to that of theorem 4.

induction base:
compose(translate(p), inverse(translate(p)))

== compose(translate(p), translate(origin - p)) -~ see 02
== translate(p + (origin-p)) --seecl
oo p + (origin - p) == origin;

induction hypotheses:

compose(gfy, inverse(gfy)) == identity;

148 Constructive Specifications Chap. 4

compose(gf,, inverse(gf,)) == identity;

induction conclusion:
compose(compose(gf;. gf2), inverse(compose(gf;. gf2)))
== compose(compose(gf;, gf).

compose(inverse(gf,), inverse(gf;))) -- see 03
== compose(compose(compose(gf;, gf;), inverse(gf;)),

inverse(gf;)) -- see c2
== compose(compose(gf;, compose(gf, inverse(gf,))),

inverse(gf;)) -- see c2
== compose(compose(gf;, identity), inverse(gf;)) -- see ind. hyp.
== compose(gf;, inverse(gf;)) --see t3
== identity -- see ind. hyp.

In order to prove
compose(inverse(gf), gf) == identity; -6

we use induction over the variable gf according to an induction scheme
similar to that of theorem 4.

induction base:
compose(inverse(translate(p)), translate(p))

== compose(translate(origin - p), translate(p)) -- see 02
== translate((origin-p)+p) --seecl
oo (origin - p) + p == origin;

induction hypotheses:
compose(inverse(gf;), gf;) == identity;
compose(inverse(gf,). gf,) == identity;

induction conclusion:
compose(inverse(compose(gfy, gf2)), compose(gf;. gf2))
== compose(compose(inverse(gf,), inverse(gf;)).

compose(gfy, gf2)) --see 03
== compose(inverse(gf).

compose(inverse(gf;). compose(gf1, gf2))) -~ see c2
== compose(inverse(gf).

compose(compose(inverse(gf;). gf1). gf2)) -- see ¢2
== compose(inverse(gf,), compose(identity, gf,)) --see ind. hyp.
== compose(inverse(gf3), gf2) -- see 12
== identity -- see ind. hyp.

The theorems deduced above are grouped in a requirement called Point,
shown in Fig. 4/18. The first theorem expresses the associativity of the

Sec. 4.9 On Constructing Requirements 149

addition. The next two theorems state that origin denotes the identity of
the addition. Then, two theorems dictate that every point has an inverse
element with respect to the addition. The last two theorems are redundant
since they can be derived by equational reasoning from the previous ones.
Mathematicians would say that sort Point with the operation __ + __ must
form a group.

requirement Point;
export all;
sort Point;
operations

origin: -> Point;

__+ _: Point * Point -> Point;

__- _: Point * Point -> Point;
declare p, p;, P2, Ps : Point;
theorems

P1+(pa+p3)==C(py+p2)+ps3;

origin + p == p;

p + origin == p;

p + Corigin - p) = origin;.

(origin - p) + p == origin;

origin - (origin - p) = p;

(origin - py) + Corigin - py) == origin - (py + p2);

end requirement Point;

Fig. 4/18

In Fig. 4/19 the obtained scheme is shown.

scheme GeomFScheme [
requirement Point;
import all from domain;
export all;
sort Point;
operations
origin: -> Point;
__+ _: Point * Point -> Point;
__~ _:Point * Point -> Point;
declare p, p;, P2, p3 : Point;
theorems
P1+(p2+ps)=C(p1+p2) +ps;
origin + p==p;
p + origin == p;
p + (origin - p) == origin;.
(origin - p) + p == origin;

150 Constructive Specifications Chap. 4

end requirement Point;

module GeomF;
import all from Point;
export all;
sort GeomF;
constructors
translate: Point -> GeomF;
compose: GeomF * GeomF -> GeomF;
operations
transform: GeomF * Point -> Point;
inverse: GeomF -> GeomF;
identity: -> GeomF;
declare p, p;, p,: Point; gf, gfy, gfa, gf3: GeomF;
constructor axioms
compose(translate(p;), translate(p;)) ==
translate(p; + py);
compose(compose(gfy, gf3), gfz) ==
compose(gfy, compose(gf,, gf3));
operation axioms
identity == translate(origin);
inverse(translate(p)) == translate(origin - p);
inverse(compose(gfy, gf3)) == compose(inverse(gf,), inverse(gfy));
transform(translate(p;), pp) == py + P2;
transform(compose(gfy, gf,), p) = transform(gf, transform(gf,, p));
theorems
transform(identity, p) == p;
compose(identity, gf) == gf;
compose(gf, identity) == gf;
inverse(inverse(gf)) == gf;
compose(gf, inverse(gf)) == identity;
compose(inverse(gf), gf) == identity;
end module GeomF;
end scheme GeomFScheme;

Fig. 4/19

In this section we have presented a three-step method to build semantic
interfaces of parameterized specifications. The method is based on proving
the consistency and the ground confluence of the parameterized modules
and on the validation of their theorems. Consequently, this consistency,
ground confluence and validity are guaranteed.

The three-step method has been illustrated by means of the example of
geometric functions. The resulting interface nicely expresses that the sort
Point with its addition must form a group. The axioms and theorems of
the non-parameterized module we started from (see Fig. 4/16), were taken
from a subset of Mallgren's specification of geometric functions
[Mallgren82]. Mallgren did not treat parameterization in his specification.
It was nice to.see. that neither the axioms nor the theorems had to be
modified to obtain the resulting interface by means of our three-step

Sec. 4.9 On Constructing Requirements 151

method. The same method can be applied to Mallgren’s complete
specification. Therefore, the original specification (see Fig. 4/14) has to be
made ground confluent by adding the appropriate constructor axioms. The
resulting semantic interface will state that the points and the scalar values
(used for scaling) must form a field.

Our three-step method requires specifications to be ground confluent
and consistent, thus restricting the class of specifications that can be
treated. Another point is that deriving semantic interfaces by means of
our three-step method can be a tedious job. To make such a process
feasible, powerful theorem provers are a necessity.

4.10 Claiming Modules

In Chapter 3 the definition of a requirement was given. Many examples
illustrating the notion of requirement can be found in Chapters 3 and 4.
The notion of requirement has been defined in such a way that the abstract
data type defined by an actual module need not be an initial algebra of the
requirement. The abstract data type of the actual module may have less,
the same or more objects with respect to the initial algebra of the
requirement. Consider Fig. 4/20.

scheme XScheme [
requirement ListNat;
import Nat from Nat;
export all;
sort L
operations
new: -> L;
add: Nat*L -> L;
end requirement ListNat;

I
module X;

end module X;
end scheme XScheme;

Fig. 4/20

It is not allowed to define within the module X a new operation as in Fig.
4/21.

152 Constructive Specifications Chap. 4

module X;

operation
first: L -> Nat;
declare n, ny, ny: Nat; 1I: L;
operation axioms
first(new) == zero;
first(add(n, new)) ==n;
first(add(ny, add(ny, 1)) == first(add(ny, 1));

end module X;

Fig. 4/21

Nor is it allowed to use a case construct with a case index of sort L. The
reason for this is that the uniqueness and completeness constraints cannot
be guaranteed to be met for all possible instantiations. The module X in
Fig. 4/21 is safe only if we could guarantee the existence of a bijection
between the objects of sort L and the objects of the sort defined by any
possible actual module that may be bound with the requirement ListNat.

Therefore, a more restricted kind of requirements is introduced by
allowing a scheme to claim not only requirements but also modules. If a
module is claimed by a scheme, the following conditions must be met by
any (partial) instantiation that binds the claimed module with an actual
module.

1. Every formal sort defined in the claimed module must be bound with
a sort defined by or imported in the actual module.

2. Every formal constructor defined in the claimed module must be

bound with a constructor or an operation that is defined by or
imported in the actual module, such that the rank of the constructor
is preserved.
Every formal non-constructor operation defined in the claimed
module must be bound with a constructor or an operation that is
defined by or imported in the actual module, such that the rank of
the operation is preserved.

3. The formal constructor axioms, operation axioms and theorems of the
claimed module must be preserved by the actual data types.

4. For every formal sort s; of the claimed module that is bound with an
actual sort s,, a (data) bijection must exist between the (formal)
objects_of sort_s; belonging to the initial algebra of the claimed

Sec. 4.10 Claiming Modules 153

module and the objects of sort s, of the abstract data type defined by
the actual module.

The first three conditions can be considered as a restricted version of the
conditions in the definition of parameter morphism for claimed
requirements, see Section 3.4.1. The extra fourth condition is the essential
difference between claiming a module and claiming a requirement.

An example of claiming a module is given in Fig. 4/22. Mod3 is the
formal module whereas ThreeThings is the actual module.

scheme XScheme [
module Mod3;
export all;
sort Mod3;
constructors
zero: -> Mod3;
succ: Mod3 -> Mod3;
constructor axiom
suce(suce(suce(zero))) == zero;
end module Mod3;

»

module X;
import all from Mod3
operation
f: Mod3 -> ..;;

declare m: Mod3; ...
operation axioms
f(zero) == ...;
f(suce(m)) ==...;

end module X;
end scheme XScheme;

module ThreeThings;
export all;
sort ThreeThings;
constructors
one, two, three: -> ThreeThings;
operation
next: ThreeThings -> ThreeThings;
operation axioms
next(one) == two;
next(two) == three;
next(three) == one;
end module ThreeThings;

instantiate XScheme;

154 Constructive Specifications Chap. 4

with Mod3 as ThreeThings,
Zero as one,
succ as next;
end instantiate;

Fig. 4/22

Notice the (data) bijection between the objects of the initial algebra of the
claimed module Mod3 and the actual objects of sort ThreeThings:

zero < one
succ(zero) & two
succ(succ(zero)) & three

Both modules and requirements can be claimed by a scheme. Instead of
writing claimed modules or requirements, an instantiation may be given
that is equivalent to one or more modules and/or requirements. An
example is given in Fig. 4/23. Between the square brackets an instantiation
is given which is equivalent to a module List. This module List is claimed
by the scheme FerryProblem.

scheme FerryProblem [
requirement Object;
import Bool, true, __and __ from Bool;
export all;
sort Object;
operations

error: -> Object;

_= _: Object * Object -> Bool;
declare ob, ob;, ob,, obs: Object;
theorems

ob =o0b == true;

ob; =ob, == ob, =ob,;

(ob; = oby) and (oby = obz) > ob; =obg == true;

end requirement Object;

instantiate ListScheme; -- see Fig. 4/6
with Item as Object,
Item as Object,
undefined as error,

p—

_=_2as
end instantiate ListScheme;

requirement Constraints;
import all from List;
end requirement Constraints;
H

Sec. 4.10 Claiming Modules 155

end scheme FerryProblem;

Fig. 4/23

4.11 The Cartesian Product of Sorts

An advanced feature is the possibility to define a new sort as the Cartesian

product of other sorts. A Cartesian product
sortS==S; *S; * ... *8;

stands for the definition of sort S
sort S;

with one constructor

constructor
(s)8 %S, % .. %S, > S;
and a selector and an update operation for each of the sorts S;, S5,
Sc:
operations

5;0f _:S->8;:
SzOf . S-> SZ;

sOf _:S->8,;
[_/s)8S*S;->8;
[/s)8S*S,->S;

_[_7/s l:S*S.->S;
declare x;, v1: S5 X2, ¥2: 820 .., X, Vel Ses
operation axioms

SIOf (Xy, X2, «ees X¢) == X;,

SzOf (X1, X2, oo X¢) == X5,

scOf (1, X3, ..., X,) ==X}
(x3. %5, . X) [yn /81 J=(y1. %5, ... xc)

... and

156 Constructive Specifications Chap. 4

(X1, X2, ooy X¢) [Y2 / Sz] == (X1, Y2, -ees X¢)l
(%1, %, e, X) ye /sc 1==(x1. %5, oy)i
Each time a Cartesian product is formed, a new sort with appropriate

constructor, selector and update operations is defined. An example is
shown in Fig. 4/24.

sort PABX == PhonePool * BookingOffice * WakeUpService * MeetingPool;

Fig. 4/24

This definition stands for the sort, constructor, selector and update
operations of Fig. 4/25.

sort PABX;
constructor
(_, _, _, _): PhonePool * BookingOffice * WakeUpService * MeetingPool -> PABX;
operations
phonePoolOf _: PABX -> PhonePool;
bookingOfficeOf _: PABX -> BookingOffice;
wakeUpServiceOf _: PABX -> WakeUpService;
meetingPoolOf _: PABX -> MeetingPool;
__[_/ phonePool }: PABX * PhonePool -> PABX;
__[__/ bookingOffice }: PABX * BookingOffice -> PABX;
_[_/ wakeUpService }: PABX * WakeUpService -> PABX;
__[__/ meetingPool]: PABX * MeetingPool -> PABX;
declare pabx: PABX; pl: PhonePool; be: BookingOffice; we: WakeUpService;
ml: MeetingPool;
operation axioms
phonePoolOf (pl, be, we, ml) == pl;
bookingOfficeOf (pl, be, we, ml) == be;
wakeUpServiceOf (pl, be, we, ml) == we;
meetingPoolOf (pl, be, we, m1) == ml;
pabx [pl / phonePool] == (pl, bookingOfficeOf pabx, wakeUpServiceOf pabx,

meetingPoolOf pabx);

pabx [be / bookingOffice] == (phonePoolOf pabx, be, wakeUpServiceOf pabx,
meetingPoolOf pabx);

pabx [we / wakeUpService] = (phonePoolOf pabx, bookingOfficeOf pabx, we,
meetingPoolOf pabx);

pabx [m1/ meetingPool] == (phonePoolOf pabx, bookingQfficeOf pabx,
wakeUpServiceOf pabx, ml);

Fig. 4/25

Sec. 4.12 Constructivity and Abstraction 157

4.12 Constructivity and Abstraction

The main characteristic of the specification language proposed in this
chapter is that the specifications are (semi-)constructive. In the sequel, by
non-constructive specifications we mean specifications that are neither
constructive nor semi-constructive. Constructivity is a very important
property since it enables rapid prototyping. In this way, a software
system can be tested before it is implemented. The drawback of
constructivity is a possible loss of abstraction. Indeed, if a non-
constructive specification is found, it often has a higher level of abstraction
than the constructive version.

This will be illustrated by the example of a very simple robot system.
The world of the robot is a large flat plane. Criss-crossing this world are
horizontal streets and vertical avenues at regular one block intervals. A
corner is located wherever a street and an avenue intersect. The robot can
be placed on any corner, facing one of the four compass orientations. The
instruction start places the robot in its initial position. When the robot
executes the instruction move, he moves forward one block and continues
to face the same direction. When the robot executes the instruction turn,
he turns 90 degrees to the left. A non-constructive specification is shown
in Fig. 4/26.

sort Position;
operations
start: -> Position;
move: Position -> Position;
turn: Position -> Position;
declare pos: Position;
axioms
turn(turn(turn(turn(pos)))) == pos;
turn(move(turn(move(turn(move(turn(move(pos)))))))) == pos;
turn(turn(move(turn(turn(move(pos)))))) == pos;

Fig. 4/26

The first axiom states that if the robot executes the instruction turn four
times, its place and direction are the original ones. The second axiom states
that if the robot executes four times the instruction sequence move and
turn (i.e. goes around a block), its place and direction are the original ones.
The last axiom indicates that if the robot moves forwards, turns 180
degrees, moves forwards and turns 180 degrees, its place and direction are
again the original ones.
A semi-constructive specification may be as shown in Fig. 4/27.

158 Constructive Specifications Chap.

module Street;
export Street, startStreet, nextStreet, prevStreet;
sort Street;
constructors
startStreet: -> Street;
nextStreet: Street -> Street;
prevStreet: Street -> Street;
declare s: Street;
constructor axioms
prevStreet(nextStreet((s))
nextStreet(prevStreet((s))
end module Street;

S5
S5

module Avenue;
export Avenue, startAvenue, nextAvenue, prevAvenue;
sort Avenue;
constructors
startAvenue: -> Avenue;
nextAvenue: Avenue -> Avenue;
prevAvenue: Avenue -> Avenue;
declare a: Avenue;
constructor axioms
prevAvenue(nextAvenue(a)) == a;
nextAvenue(prevAvenue(a)) ==a;
end module Avenue;

module Robot;
import Orientation, north, east, south, west, turnleft from Orientation; -- see Fig. 2/16
Street, startStreet, nextStreet, prevStreet from Street;
Avenue, startAvenue, nextAvenue, prevAvenue from Avenue;
export start, move, turn;
sort Position == Street * Avenue * Orientation;
operations
start: -> Position;
move: Position -> Position;
turn: Position -> Position;
declare s: Street; a: Avenue; o: Orientation; pos: Position;
operation axioms
start == (startStreet, startAvenue, east);
move((s, a, north)) == (nextStreet(s), a, north);
move((s, a, east)) == (s, nextAvenue(a), east);
move((s, a, south)) == (prevStreet(s), a, south);
move((s, a, west)) == (s, prevAvenue(a), west);
turn((s, a,0)) ==(s, a, turnleft(o));
theorems
turn(turn(turn(turn(pos)))) = pos;
turn(move(turn(move(turn(move(turn(move(pos)))))))) == pos;
turn(turn(move(turn(turn(move(pos)))))) == pos;
end module Robot;

Fig. 4/27

Sec. 4.12 Constructivity and Abstraction 159

This semi-constructive specification is longer and less abstract than the
non-constructive one. The former may be considered as an implementation
of the latter. The advantage of the semi-constructive specification is that
rapid prototyping is possible. Furthermore, rigorous reasoning is easier.
As an example, for the non-constructive specification it is very hard to
prove that

theorem
turn(turn(turn(move(turn(move(pos))))))
move(turn(turn(turn(move(turn(pos)))))

%

(though it can be done using equational reasoning). For the constructive
specification, however, the above theorem can easily be proved using the
axioms as left-to-right term rewriting rules, if we replace the variable pos
successively by (s, a, north), (s, a, east), (s, a, south) and (s, a, west). If
the robot system and its world are extended with walls, beepers and a
library of instructions, the semi-constructive version is most appropriate
[Lewi85b). The price that must be paid is a lower level of abstraction.

4.13 Bibliographic Notes

Although in the early days of algebraic specifications no explicit
distinction between constructors and non-constructor operations was made,
the pioneers of algebraic specifications intuitively did, e.g.. [Guttag78a,
Goguen78]. It demonstrates that it is quite natural to distinguish between
data and procedural abstraction. Making this distinction explicit results in
more readable and reliable specifications [Mallgren82, Goovaerts84, Van
Puymbroeck84].

Constructors are called generators in [Goovaerts84, Van Puymbroeck84]
and basic generators in [Mallgren82]. No explicit distinction between data
and procedural abstraction is made neither in OBJ [Futatsugi85] nor in
ACT ONE [Ehrig85].

The uniqueness and completeness constraints were taken from
[Goovaerts84, Van Puymbroeck84], where the completeness constraint is
called exhaustiveness constraint. In [Van Puymbroeck84] an algorithm can
be found to check the uniqueness and completeness constraints in a
mechanical way.

The addition of axioms of non-constructive specifications as theorems
to a constructive specification was done by [Mallgren82] also.

160 Constructive Specifications Chap. 4

Semi-Constructive Specifications

A more severe property than ground confluence is confluence [Huet80,
Lescanne85)]. The conditions for confluence are as follows: if s, t; and t;
are terms built up of variables and constructor names, such that both t;
and t, are derived from s using the constructor axioms as left-to-right
term rewriting rules, then there exists a term u built up of variables and
constructor names such that u can be derived from t; as well as t; using
the constructor axioms as left-to-right term rewriting rules.

Confluence as well as ground confluence, and thus semi-constructivity,
are in general undecidable [Huet80, Gobel87].

The confluence property is equivalent to the Church-Rosser property.
The Church-Rosser property states that, for all terms s and t, s and t can
be proved equal by equational reasoning if and only if there exists a term u
such that both s and t can be reduced to u using the axioms as left-to-right
term rewriting rules [Huet80, Coleman85],

One can get around the problems with constructor aXioms in many
ways. A first solution consists of not using constructor axioms; both Fig.
4/8 and Fig. 4/9 are then considered as specifications for sets.

Another solution is to use hidden operations for some of the
constructors. By using the hidden operation hinsert, the module Set of Fig.
4/8 is redefined in Fig. 4/28.

scheme SetScheme [
requirement Item;
import Bool, true, _ and _, not __from Bool;
export all;
sort Item;
operations
=:Item * Item -> Bool;
_ < _:Item * Item -> Bool;
declare it, ity, ity, it3: Item;

theorems
it =it == true;
itl = itz == itz = itl;
(ity =ity Jand (ity =itz) 2> ity =it3 == true;

ity =ity > ity < ity == false;

not (itl = it2) > ity < itz == not(itz < ity);

(ity < ity)and (ity < it3) > ity < ity == true;
end requirement Item;

module Set;
import Bool, true, false from Bool;
all from Item;
export all except hinsert;

Sec. 4.13

sort Set;
constructors
D: -> Set;
hinsert: Item * Set -> Set;
operations
insert: Item * Set -> Set;
delete: Item * Set -> Set;
{ _}: tem -> Set;
U _:Set*Set-> Set;
_ N _:Set* Set-> Set;
isin: Item * Set -> Bool;

operation axioms
insert(it, @) == hinsert(it, @);
insert(ity, hinsert(ity, s)) ==
if ity < it,

else
if ity =ity
then hinsert(it,, s)

end if
end if;
delete(it, @) ==@;
delete(ity, hinsert(ity, s)) ==
if ity = it,
then s
else
if ity < ity
then hinsert(it,, s)

end if
end if;
{ it } == hinsert(it, @);
sU@==s;

s N @==0;
sy N hinsert(it, sy) ==
if isin(it, ¢)
then insert(it, s; N sy)
else sy N sy
end if;
isin(it, @) == false;
isin(ity, hinsert(ity, s)) ==
if ity =ity
then true
else
if ity < ity
then false
else isin(ity, s)
end if
end if;
end module Set;
end scheme SetScheme;

declare s, 84, s5: Set; it, ity, ity: Item;

then hinsert(ity, hinsert(ity, s))

else hinsert(it,, insert(ity, s))

else hinsert(it,, delete(it;,s))

sy U hinsert(it, s,) == insert(it, s; U s);

Bibliographic Notes 161

Fig. 4/28

162 Constructive Specifications Chap. 4

We believe that this solution is too implementation-oriented.

In OBJ2 [Futatsugi85] attributes are added to the operations instead of
writing constructor axioms. In OBJ2 attributes are only provided for
expressing associativity, commutativity, identity elements and
idempotence, see Fig. 3/51.

Termination

Termination of a term rewriting system is in general undecidable [Huet78].
However good methods that can prove termination in most of the cases, do
exist. A straightforward method is suggested in [Dershowitz85]:

A term rewriting system is terminating if there exists a well-founded
ordering > (i.e. without any infinite descending sequence of terms)
that is compatible with rewriting (i.e. for all terms s and t: if s rewrites
to t thens > t).

However this method is not very practical because to be sure of
termination, one has to check all rewrites, which usually form an infinite
set.

Partial orderings >, with the property that if s > t, then also
f(...s...) > f(... t ...) (the replacement property) are called monotonic.
The following method, due to Manna and Ness [Manna70], eliminates the
need for considering all rewrites s — t and is often used to prove
termination:

A term rewriting system is terminating if there exists a monotonic
well-founded ordering > such that 1 > r, for each rewrite rule 1 -> r
and for any substitution of terms for the variables of the rule.

Monotonic well-founded orderings that are used to prove termination
are, e.g., the Knuth-Bendix ordering [Knuth70, Martin87] and orderings
based on polynomial interpretations of the operation symbols [Manna70,
Cherifa86].

In [Dershowitz79] the important notion of simplification ordering has
been introduced. A monotonic partial ordering > is a simplification
ordering if it possesses the subterm property, i.e. if for all terms t:
f(...t...) > t. Dershowitz proved that any simplification ordering is a
monotonic well-founded ordering for rewriting.

A lot of research has been done in constructing simplification orderings.
Most of them are based on a partial ordering of the operation symbols,
called a precedence. Examples of so called precedence orderings are the
Path of Subterms Orderings (PSO) [Plaisted78], the Recursive Path
Ordering (RPO). [Dershowitz82] and its extension with Status (RPOS)
[Kamin80], the Recursive Decomposition Ordering (RDO) [Jouannaud82]

Sec. 4.13 Bibliographic Notes 163

and its extension with Status (RDOS) [Lescanne84), and the path ordering
of Kapur, Narendran and Sivakumar (KNS) [Kapur85]. All these orderings
are closed under substitution, i.e. if s > t then s > t, with s and t being
the result of applying the substitution o to s and t respectively, for all
terms s and t and for all substitutions o. The relations between these
orderings have been examined in [Rusinowitch85] and can be summarized
in the following diagram (where each arrow means: is included in):

RPO ——————— RPOS —~————m RDOS

N

KNS
Fig. 4/29

A general and thorough survey of termination and orderings is given in
[Dershowitz85].

In [Bevers87] we describe a generalization of RPOS, the Extended
Recursive Path Ordering with Status (ERPOS). ERPOS contains a number
of parameters to be chosen, such as the precedence and orderings <g on
sequences of terms. It has been proved that if these orderings <; meet
certain conditions, ERPOS is a simplification ordering and closed under
substitution. In the same paper a special tailored ordering for term
rewriting systems with constructors has been defined (the constructive
ordering <.) by choosing appropriate orderings for <. It has been
proved that RPOS is included in this ordering, but that <. is neither
included in RDOS nor in KNS.

S. A Case Study: the Ferry Problem

"An ounce of application is worth a ton of abstraction.”
Booker'’s law

In most articles on algebraic specifications trivial examples like stacks,
queues and sets are used [Goguen78, Guttag78]. As an unbounded stack
does not exist in reality, it seems cooked up by the algebraicists because it
suits their approach so well. Actually, examples like stacks, queues and
sets are useful to illustrate the basic principles of algebraic specifications to
those who want to have a first impression. As for programming in the
small versus programming in the large, techniques and notations for
designing small specifications do not necessarily apply to large ones. In
Chapters 5 and 6, we deal with examples of a degree of complexity which
is representative for large specifications. It is our intention to show that
algebraic specifications, as described in the previous chapters, are
appropriate not only for small examples but also for non-trivial case
studies.

In this chapter, the algebraic specification for the ferry problem is
discussed. The specification is characterized by its high degree of
parameterization. It is an example illustrating how a solution for a
particular problem can be generalized to a solution for a class of similar
problems, by using the technique of abstraction by parameterization.
Originally, we started from the well-known riddle of the farmer, the wolf,
the goat and the cabbage wanting to cross a river. This example is
frequently used in the field of logic programming, see, e.g., [Kowalski82].
Through adequate parameterization the riddle was generalized to a whole
family of similar problems, called the ferry problem. Thus we can see the
riddle of the farmer, the wolf, the goat and the cabbage as a particular
instantiation, just like the riddle of the missionaries and the cannibals. At
the end of this chapter, a specification of a search strategy for the ferry
problem based on backtracking can be found. The idea here is that a
problemysolution may be described by several specifications each of a
different level of abstraction. A |design module may serve as specification
for one person, but as implementation for another.

Sec. 5.1 Informal Description of the Ferry Problem 165

5.1 Informal Description of the Ferry Problem

The Farmer, the Wolf, the Goat and the Cabbage

A typical riddle in the field of artificial intelligence is the problem of the
farmer, the wolf, the goat and the cabbage crossing a river. A farmer, a
wolf, a goat and a cabbage want to cross a river for which they dispose of
one small boat. The farmer can cross the river but he can only carry one
passenger at the most. When the farmer is absent, the wolf may eat the
goat and the goat may eat the cabbage. So the problem of how to cross the
river safely arises.

The Missionaries and the Cannibals

Another famous riddle is that of the missionaries and cannibals. Three
missionaries and three cannibals are at one bank of a river. Only a two-
seater rowboat is at their disposal. Both the missionaries and cannibals can
row. Usually the cannibals are friendly. but as soon as they are in the
majority they become dangerous to the missionaries. How can they cross
the river safely?

This riddle can easily be generalized by allowing an arbitrary number
of missionaries and cannibals. Of course, there must be at least as many
missionaries as cannibals. A variant is obtained by introducing the
restriction that only the missionaries can row.

The Ferry Problem

The ferry problem is obtained by generalizing the two previous problems
to a more general problem using the technique of abstraction. The problem
is how to transport a number of objects (human beings, animals or things)
by means of a ferry between two banks of a river. The bank the ferry is
located at originally, is called thisBank. The other bank is called
yonderBank. Several constraints must be met and using the ferry is the
only way to cross the river.

The initial situation is defined by listing the objects which are originally
at thisBank, and by listing the objects which are originally at yonderBank.
The former list of objects is called initThisBankList, the latter one is called
initYonderBankList.

166 A Case Study: the Ferry Problem Chap. 5

The target situations are defined by listing objects which must
eventually be at thisBank, and by listing objects which must eventually be
at yonderBank. The former list of objects is called targetThisBankList, the
latter one is called targetYonderBankList. Furthermore,
targetFerryDestination determines the target destination of the ferry.
Possible destinations are: thisBank, if the ferry must eventually be back at
thisBank, yonderBank, if the ferry must eventually be at yonderBank,
and thisOrYonderBank, if the destination of the ferry is irrelevant.

A restriction is that the ferry must be operational whenever it crosses
the river. It will be indicated by the boolean function operational.
Moreover the combinations of objects on the ferry, on thisBank as well as
on yonderBank must always be stable. They will respectively be indicated
by the ©boolean functions stableFerry, stableThisBank and
stableYonderBank.

A solution is defined as a sequence of crossings starting from the initial
situation and ending in a target situation, such that in each intermediate
situation the combinations of objects on the ferry, on thisBank and on
yonderBank are stable, and such that during each crossing the ferry is
operational.

5.2 Formal Specification of the Ferry Problem

A formal specification of the ferry problem is given in Fig. 5/1. Thisis a
high-level specification of a solution (the what) without giving an
implementation (algorithm) to find this solution (the how). The
specification of an implementation using backtracking will be given in
Section 5.5.

Notice that the scheme FerryProblem claims a requirement Object. a
module that is equivalent to an instantiation of ListScheme (see Section
4.10) and a requirement Constraints. ListScheme is instantiated by
binding its (formal) requirement Item to Object. Since Object is itself a
requirement of the scheme FerryProblem, it will be bound to an actual
module when FerryProblem is instantiated. In this way, the requirement
Item will be bound to that actual module. The requirement Constraints is
an example of a requirement in which semantic properties are involved.

module FerryDestination;
import Bool, true, false from Bool;
export all;
sort FerryDestination;

Sec. 5.2 Formal Specification of the Ferry Problem 167

constructors
thisBank, yonderBank, thisOrYonderBank: -> FerryDestination;

operation
__ = _: PerryDestination * FerryDestination -> Bool;

operation axioms
thisBank = thisBank == true; yonderBank = yonderBank == true;
thisOrYonderBank = thisOrYonderBank == true;
thisBank = yonderBank == false; thisBank = thisOrYonderBank == false;
yonderBank = thisBank == false; yonderBank = thisOrYonderBank == false;
thisOrYonderBank = thisBank == false; thisOrYonderBank = yonderBank == false;

end module FerryDestination;

scheme FerryProblem [
requirement Object;

import Bool, true, _ and __from Bool,

export all;

sort Object;

operations
errObject: -> Object; -- needed for the instantiation of ListScheme
_ = _: Object * Object -> Bool;

declare ob, ob;, ob,, obs: Object;

theorems
ob =o0b == true;
ob; =o0by == ob, = oby;
(oby =ob,) and (oby = obg) > oby =obg == true;

end requirement Object;

instantiate ListScheme rename List as ListOf Objects;
with Item as Object,
Item as Object,
undefined as errObject,
=_28a8_=_;

end instantiate ListScheme;

requirement Constraints;
import all from Bool, FerryDestination, ListOfObjects;
export all;
operations
initThisBankList, initYonderBankList: -> ListOfObjects; -- initial situation
targetThisBankList, targetYonderBankList: -> ListOfObjects;
-- target situations
targetFerryDestination: -> FerryDestination;
operational, stableFerry, stableThisBank, stableYonderBank:
ListOfObjects -> Bool; -- restrictions
declare obj;, objy: Object; listy, list, lists: ListOfObjects; .

theorems
(targetThisBankList & targetYonderBankList) partof
(initThisBankList & initYonderBankList) == true; -- feasibility

__ the result of the operations operational, stableFerry, stableThisBank and
-- stableYonderBank must be independent from the order of the objects
-~ of the given list
operational(lists & (obj, | listy) & (objy Ilisty)) ==
operational(listy & (obj; | list,) & (obj | listy));
stableFerry(listy & (obj, | listy) & (objy I list;)) ==
stableFerry(llisty & (objpllist,) & (obj, Ilisty));
stableThisBank(lists & (obj, | list,) & (objy | listy)) ==

168 A Case Study: the Ferry Problem Chap. 5

stableThisBank(lists & (obj; I listy) & (obj, | listy));
stableYonderBank(lists & (obj, | list,) & (objy I listy)) ==
stableYonderBank(list; & (obj; | list,) & (obj, | listy));
end requirement Constraints;

3

module IsSolution;
import all from Bool, FerryDestination, ListOfObjects, Constraints;
export all;
sort CrossSequence;
constructors
initial: -> CrossSequence; -- denotes the initial situation
cross: ListOfObjects * CrossSequence -> CrossSequence;
-- after the given CrossSequence the ferry crosses the river with ListOfObjects
-- aboard
operations
isSolution: CrossSequence -> Bool; -- indicates whether the CrossSequence is
-- a solution of the ferry problem
apt: CrossSequence -> Bool; -- indicates whether the CrossSequence does not
-- violate the restrictions
sameBankList, otherBankList: CrossSequence -> ListOfObjects;
-- returns the ListOfObjects on the bank the ferry has arrived after
-- CrossSequence, and on the other bank respectively
thisBankList, yonderBankList: CrossSequence -> ListOfObjects;
-- returns the ListOfObjects on thisBank and yonderBank respectively
-- after CrossSequence
ferryOver: CrossSequence -> Bool; -- indicates whether the ferry is at
-- yonderBank
declare seq, seqg: CrossSequence; list: ListOfObjects;
operation axioms
isSolution(seq) == apt(seq) and (targetThisBankList partof thisBankList(seq))
and (targetYonderBankList partof yonderBankList(seq)) and
if ferryOver(seq)
then not (targetFerryDestination = thisBank)
else not (targetFerryDestination = yonderBank)
end if;
apt(seq) == stableThisBank(thisBankList(seq)) and
stableYonderBank(yonderBankList(seq)) and
case seq of
initial: true;
cross(list, seqq): (list partof sameBankList(seqq)) and operational(list)
and stableFerry(list) and apt(seqq);
end case;
sameBankList(initial) == initThisBankList;
sameBankList(cross(list, seq)) == list & otherBankList(seq);
otherBankList(initial) == initYonderBankList;
otherBankList(cross(list, seq)) == remove(list, sameBankList(seq));
thisBankList(seq) =
if ferryOver(seq)
then otherBankList(seq)
else sameBankList(seq)
end if;
yonderBankList(seq) ==
if ferryOver(seq)
then sameBankList(seq)
else otherBankList(seq)
end if;

Sec. 5.2 Formal Specification of the Ferry Problem 169

ferryOver(initial) == false;
ferryOver(cross(list, seq)) == not ferryOver(seq);
end module IsSolution;
end scheme FerryProblem;

Fig. 5/1

Refutation of a Common Misconception

Programmers are often puzzled by the remarkable high degree of recursion
of algebraic specifications. The ferry problem contains several such
instances. One example is the operation apt which takes a sequence of
crossings as its single argument and returns a boolean value. Students
often raise the question why this function should be recursive: "After all,
when executing the crossings, any unstable intermediate state would result in
something being eaten. That could never be a solution as it would be detected
in an earlier stage."

The refutation obviously lies in the fact that nothing gets executed;
there simply do not exist any ’earlier stages’ as there is no inherent time
concept. The operation apt is defined on objects of sort CrossSequence.
Thanks to the mathematical foundation of algebraic specifications (see
Chapter 2), the second operation axiom of Fig. 5/1 defines for which
sequences of crossings the operation apt yields true or false. How an apt
sequence is obtained or how the operation apt may be implemented is
irrelevant at this level of abstraction.

It is true that rapid prototyping based on the direct implementation of
Fig. 5/1 is inefficient, but that has no influence on the mathematical
definition of the abstract data types. Later, when implementing a search
strategy, one obviously may (and should) use the fact that any sequence so
far constructed is apt in order to avoid extraneous checks, but this pertains
to the implementation effort and obviously not to the high level
specification.

5.3 The Farmer, the Wolf, the Goat and the
Cabbage

The riddle of the farmer, the wolf, the goat and the cabbage is a special
case (instantiation) of the ferry problem, see Fig. 5/2.

170 A Case Study: the Ferry Problem Chap. 5

module FarmerWolfGoatCabbage;
import Bool, true, false from Bool;
export all;
sort Thing;
constructors
farmer, wolf, goat, cabbage: -> Thing;
operation
=:Thing * Thing -> Bool;
operation axioms
farmer = farmer == true; wolf = wolf == true;
goat = goat == true; cabbage = cabbage == true;
farmer = wolf == false; farmer = goat == false; farmer = cabbage == false;
wolf = farmer == false; wolf = goat == false; wolf = cabbage == false;
goat = farmer == false; goat = wolf == false; goat = cabbage == false;
cabbage = farmer == false; cabbage = wolf == false; cabbage = goat == false;
end module FarmerWolf GoatCabbage;

instantiate ListScheme rename List as ListOf Things; -- see Fig. 4/6
with Item as FarmerWolfGoatCabbage;
Item as Thing,
undefined as farmer, -- arbitrary

_=_38s__=_3
end instantiate ListScheme;

module Conditions;
import all from Bool, FerryDestination, FarmerWolf GoatCabbage, ListOf Things;
export all;
operations
initThisBankList, initYonderBankList: -> ListOfThings; -- initial situation
targetThisBankList, targetYonderBankList: -> ListOf Things; -- target situations
targetFerryDestination: -> FerryDestination;
loadable: ListOf Things -> Bool; -- the ferry can only ship a limited quantity of
-- freight
capable: ListOf Things -> Bool; -- not every Thing is capable of steering the ferry
navigable: ListOf Things -> Bool; -- the ferry is navigable if its freight is
-- loadable and capable
stable: ListOf Things -> Bool;
declare th, thy, thy, ths: Thing; list: ListOf Things;
operation axioms
initThisBankList == cabbage | goat | wolf | farmer | nil;
initYonderBankList == nil;
targetThisBankList == nil;
targetYonderBankList == cabbage | goat | wolf | farmer | nil;
targetFerryDestination == yonderBank;
loadable(nil) == true;
loadable(th | nil) == true;
loadable(thy | thy | nil) == true;
loadable(thy | thy | thy | list) == false;
capable(list) == farmer isin list;
navigable(list) == loadable(list) and capable(list);
stable(list) == (farmer isin list) or (not (goat isin list and cabbage isin list) and
not (goat isin list and wolf isin list));
end module Conditions;

instantiate FerryProblem;
with Object as FarmerWolfGoatCabbage,

Sec. 5.3 The Farmer, the Wolf, the Goat and the Cabbage 171

Object as Thing, errObject as farmer -- arbitrary --,

= as = H
with ListOfObjects as ListOf Things;
with Constraints as Conditions,
initThisBankList as initThisBankList, initYonderBankList as initYonderBankList,
targetThisBankList as targetThisBankList,
targetYonderBankList as targetYonderBankList,
targetPerryDestination as targetFerryDestination,
operational as navigable, stableFerry as stable,
stableThisBank as stable, stableYonderBank as stable;
end instantiate FerryProblem;

Fig. 5/2

5.4 The Missionaries and the Cannibals

The generalized riddle of the missionaries and cannibals as described in
Section 5.1 will be specified as an instantiation of the ferry problem, see
Fig. 5/3.

module Person;
import Bool, true, false from Bool;
export all;
sort Person;
constructors
missionary, cannibal: -> Person;
operation
__=_: Person * Person -> Bool;
operation axioms
missionary = missionary == true; cannibal = cannibal == true;
missionary = cannibal == false; cannibal = missionary == false;
end module Person;

instantiate ListScheme rename List as ListOf Persons;
with Item as Person,
Item as Person,
undefined as missionary, -- arbitrary
_=_as_=_;
end instantiate ListScheme;

scheme RiddleMissionariesAndCannibals [
requirement Numbers;
import all from Bool, Nat;
export all;
operations
numberOfMissionaries, numberOfCannibals: -> Nat;
theorem

172 A Case Study: the Ferry Problem Chap. 5

numberOfCannibals € numberOfMissionaries == true;
end requirement Numbers;

I3

module Conditions;
import all from Bool, Nat, FerryDestination, Person, ListOf Persons, Numbers;
export all;
operations
initThisBankList, initYonderBankList: -> ListOfPersons; -- initial situation
targetThisBankList, targetYonderBankList: -> ListOfPersons; -- target situations
targetFerryDestination: -> FerryDestination;
loadable, capable, navigable, stable: ListOf Persons -> Bool; -- restrictions
create: Nat * Person -> ListOfPersons; -- creates a ListOfPersons built up
-- of Nat occurrences of Person
noMajorityOf Cannibals: ListOf Persons -> Bool; -- indicates whether
-- there are at least as many missionaries as cannibals
declare pers, pers;, persy, perss: Person; list: ListOfPersons; n: Nat;
operation axioms
initThisBankList == create(numberOf Missionaries, missionary) &
create(numberOfCannibals, cannibal);
initYonderBankList == nil;
targetThisBankList == nil;
targétYonderBankList == create(numberQOfMissionaries, missionary) &
create(numberOfCannibals, cannibal);
targetFerryDestination == yonderBank;
loadable(nil) == true;
loadable(pers | nil) == true;
loadable(pers; | pers; | nil) == true;
loadable(perss | pers; | pers; | list) == false;
capable(list) == not permutation(list, nil);
navigable(list) == loadable(list) and capable(list);
stable(list) ==
if missionary isin list
then noMajorityOf Cannibals(list)
else true
end if;
create(zero, pers) == nil;
create(succ(n), pers) == pers | create(n, pers);
noMajorityOfCannibals(list) ==
if cannibal isin list
then
if missionary isin list
then noMajorityOf Cannibals(remove(missionary | cannibal | nil, list))
else false
end if
else true
end if;
end module Conditions;

instantiate FerryProblem;

with Object as Person,

Object as Person, errObject as missionary -- arbitrary --,
= as = H

with ListOfObjects as ListOf Persons;

with Constraints as Conditions,
initThisBankListiasiinitThisBankList, initYonderBankList as initYonderBankList,
targetThisBankList as targetThisBankList,

Sec. 5.4 The Missionaries and the Cannibals 173

targetYonderBankList as targetYonderBankList,
targetFerryDestination as targetFerryDestination,
operational as navigable, stableFerry as stable,
stableThisBank as stable, stableYonderBank as stable;
end instantiate FerryProblem;
end scheme RiddleMissionariesAndCannibals;

Fig. 5/3

The variant in which only the missionaries can row, can be obtained by
modifying the specification of the operation capable in the following way:

capable(list) == missionary isin list;

As an example the scheme given above, is instantiated with three
missionaries and three cannibals, see Fig. 5/4.

instantiate RiddleMissionariesAndCannibals;
with Number as Nat,
numberOfMissionaries as 3,
numberOfCannibals as 3;
end instantiate RiddleMissionariesAndCannibals;

Fig. 5/4

5.5 Specification of a Search Strategy

In Fig. 5/5 an implementation of the ferry problem is specified by means
of a search strategy based on backtracking. The modules of Fig. 5/5 have
to be added to the scheme FerryProblem of Fig. 5/1.

-- Auxiliary structure List of ListOfObjects
instantiate ListScheme
rename
List as ListOfLListsOf Objects,
nil as nilL,
_I_as_IL _,
head as headL,
tail as tailL,
_&_as__ &L _,

174 A Case Study: the Ferry Problem Chap. 5

delete as deleteL,
remove as removel,
__isin _as _isinL _,
__partof _as __ partofL _,
permutation as permutationL;
with Item as ListOfObjects,

Item as ListOfObjects,
undefined as nil,
_ = __as permutation;

end instantiate ListScheme;

module ListSubLists;
import all from Object, ListOfObjects, ListOfListsOfObjects;
export all;
operations
listSubLists: ListOfObjects -> ListOfListsOfObjects;
-- lists all ListOfObjects that are partof the given ListOfObjects
addL: Object * ListOfListsOf Objects -> ListOfListsOfObjects;
-- adds Object to every member of ListOfListsOfObjects
declare obj: Object; 1list: ListOfObjects; listL: ListOfListsOfObjects;
operation axioms
listSubLists(nil) == il IL nilL;
listSubLists(obj | list) == addL(obj, listSubLists(list)) &L listSubLists(list);
addL(obj, nilL) = nilL;
addL(obj, list IL listL) == (obj | list) IL addL(obj, listL);
end module ListSubLists;

module Backtrack;
import all from Bool, IsSolution, ListOfObjects, ListOfListsOfObjects, ListSubLists;
export all;
sort ExtendedCrossSequence; -- simulates an extension of the sort CrossSequence
-- with the exception unsolvable
constructors
unsolvable: -> ExtendedCrossSequence;
solvedThru: CrossSequence -> ExtendedCrossSequence;
operations
solution: -> ExtendedCrossSequence; -- returns a solution to the ferry problem
generate: CrossSequence -> ExtendedCrossSequence; -- generatesa solution,
-- if any, starting with CrossSequence
try: CrossSequence * ListOfListsOfObjects -> ExtendedCrossSequence;
-- tries to generate a solution starting from CrossSequence by crossing the river
-- with a member of ListOfListsOfObjects aboard
circular: CrossSequence -> Bool; -- indicates whether the CrossSequence has
-- passed through two identical situations
occurred: ListOfObjects * CrossSequence -> Bool; -- indicates whether the
-- situation with ListOfObjects on the bank the ferry now is located,
-- has occurred before
isunsolvable: ExtendedCrossSequence -> Bool;
declare seq: CrossSequence; list, list,, list,, listz: ListOfObjects;
listL: ListOfListsOfObjects;
operation axioms
solution == generate(initial);
generate(seq) ==
if isSolution(seq)
then solvedThru(seq)
else
if apt(seq) and not circular(seq)

Sec. 5.5 Specification of a Search Strategy 175

then try(seq, listSubLists(sameBankList(seq)))
else unsolvable
end if

end if;
try(seq, nilL.) == unsolvable;
try(seq, list IL listL) ==

if isunsolvable(generate(cross(list, seq)))

then try(seq, listL)
else generate(cross(list, seq))

end if;
circular(initial) == false;
circular(cross(list, seq)) == occurred(sameBankList(cross(list, seq)),

cross(list, seq)) or circular(seq);
occurred(list, initial) == false;
occurred(list;y, cross(list,, initial)) == false;
occurred(listy, cross(listy, cross(lists, seq))) ==

permutation(list;, sameBankList(seq)) or occurred(list;, seq);
isunsolvable(unsolvable) == true;
isunsolvable(solvedThru(seq)) == false;

end module Backtrack;

Fig. 5/5

5.6 Conclusion

The ferry problem was a nice example of a parameterized specification.
Building parameterized specifications requires considerably more time, but
this additional effort is justified by the obtained reusability of the
specifications. A distinction was made between the specification of a
solution (the what), in Section 5.2, and the specification of the
implementation (the how), in Section 5.5. If a mathematician ever finds an
analytic formula to obtain a solution of the ferry problem, we will only
have to replace Section 5.5, and not Section 5.2.

In [Warren74, Warren76] a planning problem, called Warplan, is given.
Warplan can be considered as an even more general problem than the Ferry
Problem. The main difference is that no requirements for the data of
Warplan are given. The coherence of the data is the responsibility of the
user [Kluzniak85]. Furthermore, instantiating Warplan requires
substantially more work than instantiating the Ferry Problem.

6. A Case Study: the Mini-PABX

"Alexander Graham Bell is alive and well in New York,
and still waiting for a dial tone."
/usr/games/fortune

One of the most interesting case studies we made is the formal specification
of a substantial part of a call handling system, the I77T 5400 BCS (Business
Communication System) [Bell85b]. The ITT 5400 BCS is a modern Private
Automatic Branch Exchange (PABX for short), which has been developed
and produced by Bell Telephone Mfg. Co. Geel (Belgium) in the context of
ITT’s Office 2000 concept. Because voice communication accounts for some
80% of all office communications [Bell85al, the ITT 5400 BCS is supplied
with a wide range of features. These features considerably improve the
flow of information, provide more ease of operation and save time and
costs. The range of features for voice communications includes extension
features (i.e. features for the ordinary users), operator features and system
features.

In [Goovaers86] a first attempt was made to describe several extension
features of the ITT 5400 BCS in a formal way. The whole PABX was
designed as a single monolithic data structure. This design decision
resulted in a specification with poor modularity, readability and
extendibility. Poor extendibility means that the number of telephone
states grew out of control very rapidly when new features were added.
This phenomenon is called state explosion in [Jacobs86].

Having learned from this experiment J. De Man (Bell Telephone Mfg.
Co. Antwerp) suggested to use a more object-oriented approach, inspired
by state transition models [Sunshine82] used for the specifications of
protocols. In [Vergauwen87] we have developed such an object-oriented
design method and we have used it for the specification of the ITT 5400
BCS. The resulting specification is highly modular and adaptable and
therefore more readable. The so-called state explosion has been mastered
in an elegant way. In the specification abstraction is made from any
hardware aspect of the PABX, in contrast with [Biebow85] where a
component of a telephone system, in particular a ‘switching module’, is
specified.

Becauserof itherlengthrofsthissindustrial case study, we have extracted a
mini-PABX from the PABX. This mini-PABX provides only the two-party
voice calls and the enquiry feature of the ITT 5400 BCS.

Sec. 6.1 Object-Oriented Design Method 177

6.1 Object-Oriented Design Method

In this section the design method of the PABX is explained. We call this
method object-oriented in the sense that the various logical objects are
identified and specified. Each (logical) object is always in a definite state.
Furthermore, the objects may communicate with each other by sending
messages. When an object receives a message, the state of the object may
be changed and the object in turn may send messages to other objects. This
will be explained and illustrated later on.

Within the world of our mini-PABX, we can distinguish two sorts of
logical objects: the telephonic apparatuses, abbreviated phones, and the
users of the mini-PABX. The former are part of the mini-PABX whereas
the latter are not. We are not interested in the state of the users but only
in the messages they send to the phones. The word message must be
interpreted in its broadest sense. Examples of messages sent by users are:

¢ a message for terminating a call:
onHook: -> UserMessage;

e a message for calling someone:
dialCode: Code -> UserMessage;

e a message for enquiring:
button: -> UserMessage;

Phones cannot send messages to users. We assume that the users can
inspect the states of their phones. Phones are characterized by a state. An
example is shown in Fig. 6/1, where phone A is in state C(diaiTone).

—
B L

A |
|
C(dialTone) |

Not only users may send messages to phones, phones may also send
messages to each other.

Fig. 6/1

178 A Case Study: the Mini-PABX Chap. 6

Assume that the user of phone A sends the message U(dialCode(
phoneCode(B))) to phone A, i.e. the user of phone A dials the number of
phone B. When phone A receives this message, two actions will happen:

o The state of phone A will be changed to C(callWaiting(B)).

e Phone A will send the message C(callRequest(A)) to phone B. In
general, an object may send several messages to several objects.

This is graphically shown in Fig. 6/2. Notice that a graphical
representation of a phone contains its name and its state, messages are
represented by labelled full arrows, and when the state of a phone is
changed, it is represented with the old as well as with the new state
connected by a dotted arrow. Furthermore, the actions (of changing states
and sending messages) are chronologically numbered.

U(dialCode(phoneCode(B)))
_— 3

®

C(callRequest(A)) [B
C(callWaiting(B)) | @ { ’ J
Fig. 6/2

In a similar way, the state of phone B may be changed when it receives
the message from phone A and phone B may send messages to other objects.

Sec. 6.1 Object-Oriented Design Method 179

How the state of a phone is changed when it receives a phone message, is
specified with the operation next, see Fig. 6/3. The sort Phone consists of
the Cartesian product of sort Phoneldentity with several sorts indicating
the state of a phone. The sort PhoneMessage consists of the messages that
can be send to a phone (examples of phone messages are the message
C(callRequest(A)) and the user messages given above).

.o

sort Phone == Phoneldentity * ... ;

sort PhoneMessage;
operation
next: PhoneMessage * Phone -> Phone;

Fig. 6/3

Which phone messages are send to which phones when a phone receives
a phone message is specified by the operation out, see Fig. 6/4. The sort
ListOfMessages is a list of message pairs. A message pair is a phone
message together with its destination.

sort MessagePair;
constructor
send __ toPhone _: PhoneMessage * Phoneldentity -> MessagePair;

instantiate ListScheme rename List as ListOf Messages; -- see Fig. 4/6
with ...,
Item as MessagePair;
end instantiate ListOfScheme;

operation
out: PhoneMessage * Phone -> ListOfMessages;

.

Fig. 6/4

180 A Case Study: the Mini-PABX Chap. 6

6.2 Modularity

Because of the complexity of our case study, modularity is a necessary
condition for obtaining a readable and extendible specification. The
specification of the mini-PABX contains a two-level structure of
modularity. The first level is related to the partitioning into modules as it
was done in the examples of the previous chapters. The second level of
modularity is related to the stepwise extension of the mini-PABX. We
start with the base case: a two-party voice call. In a second step, the
enquiry feature is added. Finally, the user actions are studied. With each
new feature corresponds a new step. In the specification of the ITT 5400
BCS [Vergauwen87], we used thirteen steps. Notice that the user actions
are treated in a separate step since user actions may be related to various
features. For instance, going on-hook may terminate a two-party voice
call as well as an enquiry call.

This modularity based on the various features is reflected in the use of
the object-oriented mechanism as well. In the previous section we
explained that the messages that can be sent to a phone are defined by sort
PhoneMessage. Instead of defining sort PhoneMessage by directly
enumerating the various messages that can be received by a phone, we
define it as a union of a number of sorts corresponding to the messages
introduced for the various features, see Fig. 6/5. Sort CallMessage
specifies the messages concerning the two-party voice calls. Sort
UserMessage specifies the messages that can be sent by the users. Each
time a new feature is introduced, a new module defining the specific
messages sent to phones will be specified and the module PhoneMessages
will be adapted so that sort PhoneMessage contains the new messages as
well. The great advantage of this method is that the other modules
defining messages of the previous features remain unchanged.

module CallMessages;
sort CallMessage;
constructors
callRequest: Phoneldentity -> CallMessage;
end module CallMessages;
module UserMessages;
sort UserMessage;

constructors
dialCode: Code -> UserMessage;

Sec. 6.2 Modularity 181

end module UserMessages;
module PhoneMessages;
sort PhoneMessage;
constructors
C: CallMessage -> PhoneMessage;
U: UserMessage -> PhoneMessage;

end module PhoneMessages;

Fig. 6/5

Analogously, the operation next of Fig. 6/3 is defined as the union of a
number of operations corresponding to the messages of the various
features, see Fig. 6/6.

module NextCallPhone;

operation
next: CallMessage * Phone -> Phone;

end module NextCallPhone;
module NextUserPhone;

operation
next: UserMessage * Phone -> Phone;

end module NextUserPhone;

module NextPhone;

operation
next: PhoneMessage * Phone -> Phone;
declare callmsg: CallMessage; usermsg: UserMessage; ph: Phone;
operation axioms
next(C(calimsg), ph) = NextCallPhone.next(callmsg, ph);
next(U(usermsg), ph) = NextUserPhone.next(usermsg, ph);

end module NextPhone;

Fig. 6/6

182 A Case Study: the Mini-PABX Chap. 6

Analogously, the operation out of Fig. 6/4 is defined as the union of a
number of operations corresponding with the messages of the various
features, see Fig. 6/7.

module QutCallListOf Messages;

operation
out: CallMessage * Phone -> ListOfMessages;

end module OutCallListOf Messages;
module QutUserListOf Messages;

operation
out: UserMessage * Phone -> ListOfMessages;

end module OutUserListOf Messages;

module QutPhone;

operation
out: PhoneMessage * Phone -> ListOfMessages;
declare callmsg: CallMessage; usermsg: UserMessage; ph: Phone;
operation axioms
out(C(callmsg), ph) == OutCallListOfMessages.out(callmsg, ph);
out(U(usermsg), ph) == OutUserListOf Messages.out(usermsg, ph);

end module QutPhone;

Fig. 6/7

6.3 The Abstract Data Type Phone

Our mini-PABX has only one sort of logical objects, i.e. the sort Phone.
Every phone has an identity. This identity may be a five-digit number, a
room identification, the name of the subscriber, a colour, ... The concrete
definition of the identity is not relevant for the specification of our mini-
PABX. Therefore, the specification of the mini-PABX will be
parameterized with the requirement Phoneldentity, where a sort
Phoneldentity, an object errPhoneldentity for error handling and a classical
equality operation are required, see Fig. 6/8.

Sec. 6.3 The Abstract Data Type Phone 183

requirement Phoneldentity;
import Bool, true, __and __ from Bool;
export all;
sort Phoneldentity;
operations
errPhoneldentity: -> Phoneldentity;
=: Phoneldentity * Phoneldentity -> Bool;
declare i, i3, iy, i3: Phoneldentity;
theorems
i=1i==true;
ip=lp==lp=ip;
(iy = ip) and (i = i3) 2> (ij = i3) == true;
end requirement Phoneldentity;

Fig. 6/8

Besides an identity, a phone has also a phonestate. The modularity
obtained by stepwise extending the mini-PABX is reflected in the
definition of the sort Phone in two ways. Firstly, the sort phone is a
Cartesian product of sort Identity and sort PhoneState. Each time a new
feature is introduced, the Cartesian product may be extended with new
characteristics (e.g., PhoneMode when the enquiry feature is introduced,
see Section 6.9). Secondly, sort PhoneState is a union of sorts
corresponding with the states (if any) introduced for the various features.

The skeleton for the definition of the abstract data type phone is given
in Fig. 6/9.

module CallStates;

sort CallState;
constructors
dialTone: -> CallState;
callWaiting: Phoneldentity -> CallState;

end module CallStates;

module PhoneStates;
sort PhoneState;
constructors .
C: CaliState -> PhoneState; -- Notice that this constructor C is
-- distinct from the C of module PhoneMessages (overloading).

end module PhoneStates;

module Phone;

184 A Case Study: the Mini-PABX Chap. 6

sort Phone == Phoneldentity * PhoneState * PhoneMode * ...

end module Phone;

Fig. 6/9

6.4 Error Handling

A designer may build a specification so that certain situations cannot
occur. For example, in Section 6.8 a phone will receive the message
C(callAccepted) only if it is in the state C(callWaiting(__)). Because
of the completeness constraints, the operations next and out must also be
defined for a phone in another state receiving this message. Instead of
writing an arbitrary term, we will write error. Error may be interpreted
as an overloaded nullary operation that is propagated by the other
operations.

Because of physical limitations of the classical telephonic apparatuses,
certain combinations of user actions are impossible. E.g., it is impossible to
hang up twice without picking up the receiver. We will abstract from
these physical limitations of phones. Indeed, we may imagine apparatuses
where going on-hook is performed by operating a button. With such
phones, hanging up twice without going off-hook is simply done by
pushing the (on-hook) button twice.

Erroneous actions performed by users are treated in the same object-
oriented and modular way as the not-erroneous actions. E.g., in Section 6.8
dialling a wrong number is discussed.

6.5 The Abstract Data Type Mini-PABX

It is obvious that our mini-PABX will contain several phones. Therefore,
sort PhonePool is defined in Fig. 6/10 by instantiating scheme
ObjectPoolScheme. ObjectPoolScheme defines a pool of objects (second
requirement of the scheme) where each object has an identity (first
requirement of the scheme). The constructor emptyObjectPool creates an
empty pool, whereas the constructor addObject adds the given object to the
given pool. The information about an object may be overridden by means
of the operation update. The operation select selects the object with the
given identity in the given pool. The operation isIn checks whether the
given pool contains an object with the given identity.

Sec. 6.5 The Abstract Data Type Mini-PABX 185

scheme ObjectPoolScheme [
requirement Identity;
import Bool, true, __and __from Bool;
export all; -
sort Identity;
operation
_ = _:Identity * Identity -> Bool;
declare i, i, i, i3: Identity;
theorems
i=i==true;
iy =iy ==ip=1iy;
(il = ig) and (i2 = i3) > (il = i3) == {rue;
end requirement Identity;

requirement Object;
import Identity from Identity;
export all;
sort Object;
operations
errObject: -> Object;
identityOf _: Object -> Identity;
end requirement Object;

module ObjectPool;
import Object, errObject, identityOf __ from Object;

Bool, true, false, not from Bool; Identity, _ = __ from Identity;
export ObjectPool, emptyObjectPool, addObject, update, select, isIn, remove;
sort ObjectPool;
constructors

emptyObjectPool: -> ObjectPool;

addObject: ObjectPool * Object -> ObjectPool;
operations

update: ObjectPool * Object -> ObjectPool;

select: ObjectPool * Identity -> Object;

remove: ObjectPool * Identity -> ObjectPool;

isIn: ObjectPool * Identity -> Bool;
declare obj, obj;, objs: Object; id: Identity; pl: ObjectPool;
constructor axioms

not (identityOf obj; = identityOf obj,) =>

addObject(addObject(pl, obj;), objy) ==
addObject(addObject(pl, obj,), obj; J;
(identityOf obj; = identityOf obj,) 3>
addObject(addObject(pl, objy), objz)) ==
addObject(pl, obj,);
operation axioms
update(emptyObjectPool, obj) == error;
update(addObject(pl, obj;), objy) ==
if identityOf obj; = identityOf obj,
then addObject(pl, obj,)
else addObject(update(pl, obj;), objy)
end if;
select(emptyObjectPool, id) = errObject;
select(addObject(pl, obj), id) ==

186 A Case Study: the Mini-PABX

if identityOf obj =id
then obj
else select(pl, id)
end if;
remove(emptyObjectPool, id) == error;
remove(addObject(pl, obj), id) ==
if identityOf obj=id
then pl
else addObject(remove(pl, id), obj)
end if;
isIn(emptyObjectPool, id) == false;
isIn(addObject(pl, obj), id) ==
if identityOf obj =id
then true
else isIn(pl, id)
end if;
end module ObjectPool;
end scheme ObjectPoolScheme;

instantiate ObjectPoolScheme
rename ObjectPool as PhonePool, emptyObjectPool as emptyPhonePool,
addObject as addPhone;
with Object as Phone,
Object as Phone,
errObject as errPhone,
identityOf __ as phoneldentityOf _;
with Identity as Phoneldentity,
Identity as Phoneldentity,
—_=_a_=_
end instantiate ObjectPoolScheme;

Chap. 6

Fig. 6/10

In [Vergauwen87] the sort PABX is defined as

sort PABX == PhonePool * BookingOffice * WakeUpService * MeetingPool;

Fig. 6/11

Sorts BookingOffice, WakeUpService and MeetingPool are respectively
related to the booking feature, the wake up feature and the conference
feature. This reflects the modularity obtained by stepwise extending the
mini-PABX. Each time a new feature is added, the Cartesian product may
be extended. In our mini-PABX we will only need sort PhonePool, see Fig.

6/12.

Sec. 6.5 The Abstract Data Type Mini-PABX 187

module MiniPABX;
import PhonePool from PhonePool;
export all;
sort MiniPABX == PhonePool;

end module MiniPABX;

Fig. 6/12

6.6 The Scheduling of the Messages

Assume that a user sends a message to his phone (e.g., he hangs up, i.e. he
sends the user message onHook). As explained in Section 6.1, his phone
may be changed of state and his phone may send messages to other phones.
These phones in turn may be changed of states and send messages to other
phones, and so on. The state of the mini-PABX is stable when the whole
chain of receiving and sending has been finished. This transformation of
the mini-PABX activated by a single message can be described in a formal
way by means of the operation transform. The expression transform(msg,
0ldMiniPABX) denotes the new stable state of the mini-PABX, obtained
after sending the message msg to the mini-PABX that was in state
oldMiniPABX.

The operation transform is specified in module MessageScheduler, see
Fig. 6/13, using the hidden operation hiddenTransform. The operation
hiddenTransform has a list of messages and a mini-PABX as arguments
and returns a transformed, stable mini-PABX, obtained by sending the
given and activated messages one by one to the mini-PABX.

module MessageScheduler;
import all from MiniPABX; all from PhonePool;
Phoneldentity from Phoneldentity; Phone from Phone;
next from NextPhone; out from OutPhone; all from ListOfMessages;
all from MessagePairs; PhoneMessage from PhoneMessages;
export transform;
operations
transform: MessagePair * MiniPABX -> MiniPABX;
hiddenTransform: ListOf Messages * MiniPABX -> MiniPABX;
declare pabx, newpabx: MiniPABX; msg: MessagePair;
listof msg, outmsg: ListOfMessages; phmsg: PhoneMessage;
ph, newph: Phone; phid: Phoneldentity; phpool: PhonePool;
operation axioms
transform(msg; pabx).==hiddenTransform(msg | nil, pabx);
hiddenTransform(nil, pabx) == pabx;
hiddenTransform(send phmsg toPhone phid | listof msg, pabx) ==

188 A Case Study: the Mini-PABX

let phpool == phonePoolQf pabx;
ph == select(phpool, phid);
newph == NextPhone.next(phmsg, ph);
newpabx == update(pabx, newph);
outmsg == OutPhone.out(phmsg, ph)
in
hiddenTransform(outmsg & listofmsg, newpabx)
end let;
end module MessageScheduler;

Fig. 6/13

6.7 Skeleton of the Mini-PABX

Chap. 6

In Fig. 6/14 the concepts and structures discussed in the previous sections

are combined into the skeleton of the mini-PABX.

scheme MiniPABX [

that requires an identity:

for every sort Object of logical objects of the mini-PABX

| a data module requiring a sort Objectldentity]

requirement Phoneldentity;
... --see Fig. 6/8

end requirement Phoneldentity;

for every sort Object of logical objects of the mini-PABX,
the following modules are defined:

[a data module defining the sort Object I

module Phone;
... --see Pig. 6/9
end module Phone;

a data module defining the sort ObjectMessage]

module PhoneMessages;
... --see Fig.6/5
end module PhoneMessages;

[functional module defining the operation next |

Sec. 6.7 Skeleton of the Mini-PABX

module NextPhone;
... --see Pig. 6/6
end module NextPhone;

| a functional module defining the operation out |

module QutPhone;
... --see Fig.6/7
end module OutPhone;

" the mini-PABX and the MessageScheduler Il

[a data module defining the sort MiniPABX |

module MiniPABX;
... --see Fig.6/12
end module MiniPABX;

[data modules defining the sorts MessagePair and ListOfMessages]

module MessagePairs;
... --seeFig. 6/4
end module MessagePairs;

module ListOf Messages;
... --seeFig. 6/4
end module ListOfMessages;

a functional module defining the operation transformJ

module MessageScheduler;
... --seeFig.6/13
end module MessageScheduler;

end scheme miniPABX;

Fig. 6/14

6.8 A Two-Party Voice Call

189

A two-party voice call [Steegmans84] is the simplest call type which a user
may make to and receive from another party, without intervention of a
third party. A user may go off-hook and dial the number of the wanted
party. If the called phone is busy, he receives the busy tone. If the called
phone is free, he receives the ring tone and the called phone starts ringing.
When the called party goes off-hook, the two-party voice call has been

realized. The call is terminated as soon as one of both goes on-hook.

190 A Case Study: the Mini-PABX Chap. 6

6.8.1 The Module Phone

In Fig. 6/15 the module Phone is defined as explained in Section 6.3. We
remember that sort PhoneState is a union of sort CallState with other sorts
that will be added when new features of the mini-PABX are defined.

module CallStates;
import Phoneldentity from Phoneldentity;
export all;
sort CallState;
constructors
idle: -> CallState;
ringing: Phoneldentity -> CallState;
dialTone: -> CallState;
callWaiting: Phoneldentity -> CallState;
busyTone: Phoneldentity -> CallState;
ringTone: Phoneldentity -> CallState;
errorTone: -> CallState;
connected: Phoneldentity -> CallState;
terminating: -> CallState;
end module CallStates;

module PhoneStates;
import CallState from CallStates;
export all;
sort PhoneState;
constructor
C: CallState -> PhoneState;
end module PhoneStates;

module Phone;
import Phoneldentity, errPhoneldentity from Phoneldentity;
PhoneState, C from PhoneStates; idle from CallStates;
export all except (_, _), _ [_ / phoneldentity];
sort Phone == Phoneldentity * PhoneState
rename phoneldentityOf __ as identityOf _;
operations
newPhone: Phoneldentity -> Phone;
errPhone: -> Phone;
declare id: Phoneldentity;
operation axioms
newPhone(id) == (id, C(idle));
errPhone == (errPhoneldentity, C(idle));
end module Phone;

Fig. 6/15

Sec. 6.8 A Two-Party Voice Call 191

6.8.2 The Module PhoneMessages

A call connection from phone A to phone B has been established if and only
if:

e phoneStateOf phone(A) == C(ringTone(B));
e phoneStateOf phone(B) == C(ringing(A));

A talk connection between phone A and phone B has been established if
and only if:

e phoneStateOf phone(A) == C(connected(B));
e phoneStateOf phone(B) == C(connected(A));

The messages that will be introduced for specifying two-party voice
calls can be partitioned into four classes:

e messages for establishing a call connection,
e messages for terminating a call connection,
e messages for transforming a call connection into a talk connection,
e messages for terminating a talk connection.

If phone A wants to realize a two-party voice call to phone B, it must
establish a call connection first, which can be transformed into a talk
connection.

Establishing a Call Connection

For establishing a call connection from phone A to phone B, phone A sends
the message C(callRequest(A)) to phone B. If phone B accepts this
request, it answers with the message C(callAccepted). If phone B does
not accept, e.g., because it is busy, it sends the message C(callRefused) to
phone A. These two scenarios are graphically illustrated in Fig. 6/16 and
6/17.

192 A Case Study: the Mini-PABX Chap. 6

C(callRequest(A))

\
ﬁ

A
C(callWaiting(B))

el T ———

Fig. 6/16

®

C(callRequest(A))

A
C(callWaiting(B)) | =

CU callRefused)

Q

oL A
L ib)

Sec. 6.8 A Two-Party Voice Call 193

The reader may wonder what happens when the user of phone A dials a
wrong nummer, i.e. phone A sends the message C(callRequest(A)) to a
phone that is not in the phone pool. According to the specification of the
operation select in Fig. 6/10, the message C(callRequest(A)) will be sent
to the phone errPhone. When errPhone receives this message, it will send
back the message C(callErroneous) to phone A. This object-oriented error
handling is graphically shown in Fig. 6/18.

¢

, ® N\
i C(callRequest(A)) .

—
A errPhone

| callWaiting(B)) __C(callErroneous) _ C(idle)

1’\
Fig. 6/18 L“(_EMI

Terminating a Call Connection

A call connection from phone A to phone B can only be terminated by
phone A by sending the message C(ringingTermination) to phone B. This
is shown in Fig. 6/19.

194 A Case Study: the Mini-PABX Chap. 6

. - . . B
C(ringingTermination)

©

L

Fig. 6/19 Clidle)

©

Fig. 6/20

Sec. 6.8 A Two-Party Voice Call 195

Transforming a Call Connection into a Talk Connection

Only the called phone B can transform the call connection into a talk
connection. This can be done by sending the message C(answer) to the
calling phone A, see Fig. 6/20.

Terminating a Talk Connection

Both parties of a talk connection may terminate the talk connection by
sending the message C(callTermination) to the other phone, see Fig. 6/21.

______\\I

bla bla bla

i A 1 C(callTermination)

)
A

“%

)76
A
Fig. 6/21 l‘_T(ler_minz_mn?)

[|

All these messages are formally specified in the module CallMessages,
see Fig. 6/22. The sort PhoneMessage is the union of sort CallMessage with
other sorts that will be added when new features of the mini-PABX are
defined, see Section 6.2.

module CallMessages;
import Phoneldentity from Phoneldentity;
export all;
sort CallMessage;
constructors
callRequest: Phoneldentity -> CallMessage;

196 A Case Study: the Mini-PABX Chap. 6

callAccepted: -> CallMessage;

callRefused: -> CallMessage;

callErroneous: -> CallMessage;

ringingTermination: -> CallMessage;

answer: -> CallMessage;

callTermination: -> CallMessage;
end module CallMessages;

module PhoneMessages;
import CallMessage from CallMessages;
export all;
sort PhoneMessage;
constructor
C: CallMessage -> PhoneMessage;
end module PhoneMessages;

Fig. 6/22

6.8.3 The Module NextPhone

The operation next is defined in Fig. 6/23, according to the method
discussed in Sections 6.1 and 6.2.

module NextCallPhone;
import Phoneldentity, errPhoneldentity from Phoneldentity; all from CallMessages;
C from PhoneStates; all except dialTone from CallStates;
Phone, identityOf _, phoneStateOf _, [_ / phoneState] from Phone;
export next to NextPhone;
operation
next: CallMessage * Phone -> Phone;
declare id: Phoneldentity; ph: Phone;
operation axioms
next(callRequest(id), ph) ==
if identityOf ph = errPhoneldentity
then ph
else
case phoneStateOf ph of
C(idle): ph [C(ringing(id)) / phoneState J;
otherwise: ph;
end case
end if;

next(callAccepted, ph) ==
case phoneStateOf ph of
C(calilWaiting(id)): ph [C(ringTone(id)) / phoneState ;
otherwise: error;
end case;

next(callRefused, ph) ==
case phoneStateOf ph of

Sec. 6.8 A Two-Party Voice Call

C(callWaiting(id)): ph [C(busyTone(id)) / phoneState I;
otherwise: error;
end case;

next(ringingTermination, ph) ==
case phoneStateOf ph of
C(ringing(id)): ph [C(idle) / phoneState J;
otherwise: error;
end case;

next(answer, ph) ==
case phoneStateOf ph of
C(ringTone(id)): ph [C(connected(id)) / phoneState J;
otherwise: error;
end case;

next(callTermination, ph) ==
case phoneStateOf ph of
C(connected(id)): ph [C(terminating) / phoneState J;
otherwise: error;
end case;

next(callErroneous, ph) ==
ph [C(errorTone) / phoneState ;
end module NextCallPhone;

module NextPhone;
import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages; next from NextCallPhone;
export next;
operation
next: PhoneMessage * Phone -> Phone;
declare callmsg: CallMessage; ph: Phone;
operation axiom
next(C(callmsg), ph) == NextCallPhone.next(callmsg, ph);
end module NextPhone;

197

Fig. 6/23

6.8.4 The Module Out Phone

Analogously, the operation out is given in Fig. 6/24.

module OutCallListOf Messages;

ListOf Messages, nil, _ | _ from ListOfMessages; idle from CallStates;
Phone, identityOf _, phoneStateOf _ from Phone; C from PhoneStates;
all from CallMessages; send _ toPhone __ from MessagePairs;

export out to OutPhone;

operation
out: CallMessage * Phone -> ListOf Messages;

import Phoneldentity, errPhoneldentity from Phoneldentity; C from PhoneMessages;

198 A Case Study: the Mini-PABX Chap. 6

declare id: Phoneldentity; ph: Phone;
operation axioms
out(callRequest(id), ph) ==
if identityOf ph = errPhoneldentity
then send C(callErroneous) toPhone id | nil
‘else
case phoneStateOf ph of
C(idle): send C(callAccepted) toPhone id | nil;
otherwise: send C(callRefused) toPhone id | nil;
end case
end if;

out(callAccepted, ph) == nil;

out(callRefused, ph) == nil;

out(ringingTermination, ph) == nil;
out(answer, ph) == nil;

out(callTermination, ph) == nil;

out(callErroneous, ph) == nil;
end module OutCallListOf Messages;

module OutPhone;
import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages; out from OutCallListOf Messages;
ListOfMessages from ListOf Messages;
export out;
operation
out: PhoneMessage * Phone -> ListOfMessages;
declare callmsg: CallMessage; ph: Phone;
operation axiom
out(C(callmsg), ph) == OutCallListOf Messages.out(callmsg, ph);
end module OutPhone;

Fig. 6/24

6.9 Enquiry Call

A user engaged in any call (e.g.. a two-party voice call) may initiate an
enquiry call to a third party, set up a conversation with this third party
and then return to his previous party.

To do so, the following actions must be taken. One of the two parties
involved in the original call, say the first party, operates the recall button,
dialytonesisireturnedstosthisyparty. The first party can dial now the third
party’s number. According to the state of the third party, ring tone or

Sec. 6.9 Enquiry Call 199

busy tone is returned. If the phone of the third party is free, it starts
ringing. When the third party goes off-hook, an enquiry call [Steegmans85]
has been realized. communication between the first and third party is
possible. During the whole enquiry call, the second party cannot
communicate with the first party any more, the second party is held in a
kind of waiting state. The first party in conversation with the third party
returns to the second party operating the recall button. Then, the enquiry
call to the third party is terminated.

In [Steegmans85, Vergauwen87] a third party cannot make an enquiry
to a further party during the enquiry call. Here, we will abandon this
restriction, resulting in a more general definition of the enquiry call.

6.9.1 The Module Phone

Up to now, a phone could be involved in one connection at most. This
connection could be a call or talk connection. A phone involved in one
connection at most is said to be in a normal mode. Introducing enquiry
calls means that a phone may be involved in two connections: the
underlying connection and the enquiry connection. The enquiry connection
may be a call or talk connection. The underlying connection may only be a
blocked connection (this will be defined later). The enquiry connection,
which is the active connection, will still be described by means of the sort
PhoneState, which is a component of the sort Phone. We introduce a new

sort, called PhoneMode, to describe the underlying connection, see Fig.
6/25.

module PhoneModes;
import Phoneldentity from Phoneldentity;
export all;
sort PhoneMode;
constructors
normal: -> PhoneMode;
enquiry: Phoneldentity -> PhoneMode;
enquiryNil: -> PhoneMode;
end module PhoneModes;

Fig. 6/25

The mode normal indicates that the phone has not initiated an enquiry
call (but it may, e.g., have been called by a phone in enquiry mode). A
phone B has mode enquiry(A) as soon as it has operated the recall button

200 A Case Study: the Mini-PABX Chap. 6

to initiate an enquiry call during a call connection with phone A. If phone
A hangs up during the enquiry call, however, the mode of phone B becomes
enquiryNil. In Fig. 6/26 the sort PhoneMode is added to sort Phone.

module Phone; .
import Phoneldentity, errPhoneldentity from Phoneldentity;
PhoneState, C from PhoneStates;
PhoneMode, normal from PhoneModes; idle from Callstates;
export all except (_, _, _), _ [_ / phoneldentity
sort Phone == Phoneldentity * PhoneState * PhoneMode
rename phoneldentityOf __as identityOf _;
operations
newPhone: Phoneldentity -> Phone;
errPhone: -> Phone;
declare id: Phoneldentity;
operation axiom
newPhone(id) == (id, C(idle), normal);
errPhone == (errPhoneldentity, C(idle), normal);
end module Phone;

Fig. 6/26

For introducing the enquiry feature, only one new phone state is
needed. If phone A has a talk connection with phone B and B initiates an
enquiry call, phone A comes into the enquiry state heldBy(B), see Fig.
6/217.

module EnquiryStates;
import Phoneldentity from Phoneldentity;
export all;
sort EnquiryState;
constructor
heldBy: Phoneldentity -> EnquiryState;
end module EnquiryStates;

module PhoneStates;
import CallState from CallStates;
EnquiryState from EnquiryStates;
export all;
sort PhoneState;
constructors
C: CaliState -> PhoneState;
E: EnquiryState -> PhoneState;
end module PhoneStates;

Fig. 6/27

Sec. 6.9 Enquiry Call 201

6.9.2 The Module PhoneMessages

A blocked connection from phone B to phone A has been established if and
only if:

e phoneModeOf phone(B) == enquiry(A);
e phoneStateOf phone(A) == E(heldBy(B));

The messages that will be introduced for specifying enquiry calls can be
partitioned into three classes:

e messages for transforming a talk connection into a blocked connection,
e messages for terminating a blocked connection,

e messages for transforming a blocked connection into a talk connection.

Transforming Talk Connection into Blocked Connection

A talk connection from phone A to phone B can only be transformed into a
blocked connection if the party initiating the transformation, say B, is in
mode normal. Phone B, which comes in mode enquiry(A), establishes the
transformation by sending the message E(onHold) to phone A. Then,
phone A comes in phone state heldBy(B), see Fig. 6/28.

g

a bla b bla bla bla)
hl a bla
\\ : _

¢,
K_(_(r“

B o
normal
(Lunnected(B)) l LI(connected(A))

; %,
“odm Jul
. B
A riev(A)
Fig. 6/28 E(hewl._’xf_i)_’J LC\ artone)

202 A Case Study: the Mini-PABX Chap. 6

Terminating a Blocked Connection

Both parties of a blocked connection may terminate the connection by
sending the message E(onHoldTermination(X)) to the other party, with
X standing for the identity of the phone terminating the blocked
connection. This is graphically illustrated in Fig. 6/29 and 6/30.

E(onHoldTermination(B))

®

A
E(heldBy(B))

A
C(terminating)

Fig. 6/29

Sec. 6.9 Enquiry Call 203

E(onHoldTermination(A))

Fig. 6/30

Transforming Blocked Connection into Talk Connection

Only the phone that initiated the blocked connection may transform it
back into a talk connection by sending the message E(onHoldResolved) to
its previous partner, see Fig. 6/31.

ol La N ZJI_E})I

204 A Case Study: the Mini-PABX Chap. 6

. A [B |
| I';(_tﬂd}iy(B)) J eng L:_:TTY(A) |

(i) *_ ;

AN

& =.
\jSfj g
o,

— 4i

g “\\\":s-. bla bla bla

bla bla bla (1) \t’{._ﬂ

N ~

T \ —

[-

Fig. 6/31 | C(connected(B)) | C(connected(A))

All these messages are formally specified in the module
EnquiryMessages, see Fig. 6/32. The sort PhoneMessage is the union of
sort CallMessage and EnquiryMessage.

module EnquiryMessages;
import Phoneldentity from Phoneldentity;
export all;
sort EnquiryMessage;
constructors
onHold: -> EnquiryMessage;
onHoldTermination: Phoneldentity -> EnquiryMessage;
onHoldResolved: -> EnquiryMessage;
end module EnquiryMessages;

module PhoneMessages;
import CallMessage from CallMessages;
EnquiryMessage from EnquiryMessages;
export all;
sort PhoneMessage;
constructors
C: CallMessage -> PhoneMessage;
E: EnquiryMessage -> PhoneMessage;
end module PhoneMessages;

Fig. 6/32

Sec. 6.9 Enquiry Call 205

6.9.3 The Module NextPhone

As explained in Section 6.2, the operation next of module NextPhone is
defined as the union of a number of operations corresponding to the
messages of the various features. The operation next corresponding to the
call messages was given in Fig. 6/23. In Fig. 6/33 the operation next
corresponding to the enquiry messages is given.

module NextEnquiryPhone;
import Phoneldentity from Phoneldentity; all from PhoneModes;
all from EnquiryMessages; connected, terminating from CallStates;
Phone, phoneStateOf _, phoneModeOf _, __[_ / phoneState],
_[_/ phoneMode] from Phone; C, E from PhoneStates;
export next to NextPhone;
operation
next: EnquiryMessage * Phone -> Phone;
declare mode: PhoneMode; ph: Phone; id, idy: Phoneldentity;
operation axioms
next(onHold, ph) ==
case phoneStateOf ph of
C(connected(id)): ph [E(heldBy(id)) / phoneState];
otherwise: error;
end case;

next(onHoldTermination(id), ph) ==
enquiry(id): ph [enquiryNil / phoneMode];
otherwise:
case phoneStateOf ph of
E(heldBy(id)): ph [C(terminating) / phoneState]
otherwise: error;
end case;
end case;

next(onHoldResolved, ph) ==
case phoneStateOf ph of
E(heldBy(id)): ph[C(connected(id)) / phoneState J;
otherwise: error;
end case;
end module NextEnquiryPhone;

module NextPhone;
import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages; next from NextCallPhonel;
EnquiryMessage from EnquiryMessages; next from NextEnquiryPhone;
export next;
operation
next: PhoneMessage * Phone -> Phone;
declare callmsg: CallMessage; enquirymsg: EnquiryMessage; ph: Phone;
operation axioms
next(C(callmsg), ph) == NextCallPhone.next(callmsg, ph);
next(E(enquirymsg), ph) == NextEnquiryPhone.next(enquirymsg, ph);

206 A Case Study: the Mini-PABX Chap. 6

end module NextPhone;

Fig. 6/33

6.9.4 The Module OutPhone

Analogously, the operation out is given in Fig. 6/34.

module QutEnquiryListOf Messages;
import all from EnquiryMessages;
Phoneldentity from Phoneldentity;
Phone from Phone;
nil, ListOfMessages from ListOfMessages;
export out to QutPhone;
operation
out: EnquiryMessage * Phone -> ListOf Messages;
declare enquirymsg: EnquiryMessage; ph: Phone;
operation axioms
out(enquirymsg, ph) == nil;
end module OutEnquiryListOf Messages;

module OutPhone;
import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages; out from OutCallListOf Messages;
EnquiryMessage from EnquiryMessages; out from OutEnquiryListOfMessages;
ListOfMessages from ListOf Messages;
export out;
operation
out: PhoneMessage * Phone -> ListOfMessages;
declare callmsg: CallMessage; enquirymsg: EnquiryMessage; ph: Phone;
operation axioms
out(C(callmsg), ph) == QutCallListOfMessages.out(callmsg, ph);
out(E(enquirymsg), ph) == OutEnquiryListOfMessages.out(enquirymsg, ph);
end module OutPhone;

Fig. 6/34

6.10 User Actions

In the previous sections the two-party voice call and the enquiry feature
were described. In [Vergauwen87] a lot of other features can be found. It
is important to notice that so far only the interaction between the objects

Sec. 6.10 User Actions 207

of the mini-PABX (usually phones) were discussed but not the interaction
between the users and their phones. The reason is that a user action may
be related to various features. For instance, going on-hook may terminate
a two-party voice call as well as an enquiry call. Therefore, the user
actions are treated here, in a separate section. The module Phone, as
defined in the previous section, remains unchanged. The modules
PhoneMessages, NextPhone and OutPhone are extended in the same
systematic way as was done in the previous sections. User messages are
defined as a new kind of phone messages for indicating the interactions
from the users to their phones. Phones cannot send messages to users. We
assume that the users can inspect the states of their phones.

6.10.1 The Module PhoneMessages

In order to enable communication from the user to his phone, a phone is
provided with a number of communication parts. The physical
appearances of these parts are irrelevant. Every use of a communication
part is abstracted by means of a user message. We distinguish the
following user messages:

e offHook: -> UserMessage;

This message corresponds to picking up a receiver.
e onHook: -> UserMessage;

This message corresponds to hanging up (replacing the receiver).
e dialCode(__): Code -> UserMessage;

This message corresponds to dialling a code. The codes are described in
module Codes, see Fig. 6/35. In our mini-PABX we only have
phoneCode with a phone identity as parameter. This corresponds to
dialling a number.

module Codes;
import Phoneldentity from Phoneldentity;
export all;
sort Code;
constructors
phoneCode: Phoneldentity -> Code;
end module Codes;

Fig, 6/35

208 A Case Study: the Mini-PABX Chap. 6

e button: -> UserMessage;
This message corresponds to operating the recall button.

All these messages are formally specified in Fig. 6/36. The sort
PhoneMessage is the union of sort CallMessage, EnquiryMessage and
UserMessage.

module UserMessages;
import Phoneldentity from Phoneldentity; Code from Codes;
export all;
sort UserMessage;
constructors
onHook: -> UserMessage;
offHook: -> UserMessage;
dialCode: Code -> UserMessage;
button: -> UserMessage;
end module UserMessages;

module PhoneMessages;
import CallMessage from CallMessages; UserMessage from UserMessages;
EnquiryMessage from EnquiryMessages;
export all;
sort PhoneMessage;
constructors
C: CallMessage -> PhoneMessage;
E: EnquiryMessage -> PhoneMessage;
U: UserMessage -> PhoneMessage;
end module PhoneMessages;

Fig. 6/36

6.10.2 The Module NextPhone

The operation next is defined as the union of a number of operations
corresponding to the messages of the various features. The operations next
corresponding to the call messages and the enquiry messages were given in
Fig. 6/23 and 6/33 respectively. In Fig. 6/37 the operation next
corresponding to the user messages is given.

module NextUserPhone;
import Phoneldentity from Phoneldentity; all from Phone; all from Codes;
all from UserMessages; all except PhoneMode from PhoneModes;
C from PhoneStates; all except CaliState from CallStates;
export next to NextPhone;
operation

Sec. 6.10 User Actions 209

next: UserMessage * Phone -> Phone;
declare id, idy: Phoneldentity; ph: Phone; code: Code;
operation axioms
next(onHook, ph) ==
case phoneModeOf ph of
normal:
case phoneStateOf ph of
C(idle), C(ringing(id,)): ph;
otherwise: ph [C(idle') / phoneState J;
end case;

enquiryNil, enquiry(id): ph [C(idle) / phoneState][normal / phoneMode };
end case;

next(offHook, ph) ==
case phoneStateOf ph of
C(idle): ph [C(dialTone) / phoneState J;
C(ringing(idy)): ph [C(connected(id;)) / phoneState J;
otherwise: ph;
end case;

next(dialCode(code), ph) ==
case phoneStateOf ph of
C(dialTone):
case code of
phoneCode(id,): ph [C(callWaiting(id;)) / phoneState];
end case;
otherwise: ph;
end case;

next(button, ph) ==
case phoneModeOf ph of
normal:
case phoneStateOf ph of
C(connected(id,)):
ph [C(dialTone) / phoneState][enquiry(id;) / phoneMode J;
otherwise: ph;
end case;
enquiryNil: ph [C(terminating) / phoneState][normal / phoneMode J;
enquiry(id): ph [C(connected(id)) / phoneState][normal / phoneMode J;
end module NextUserPhone;

module NextPhone;
import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages; next from NextCallPhone;
EnquiryMessage from EnquiryMessages; next from NextEnquiryPhone;
UserMessage from UserMessages; next from NextUserPhone;
export next;
operation
next: PhoneMessage * Phone ~> Phone;
declare callmsg: CallMessage; enquirymsg: EnquiryMessage;
usermsg: UserMessage; ph: Phone;
operation axioms
next(C(callmsg), ph) == NextCallPhone.next(callmsg, ph);
next(E(enquirymsg), ph) == NextEnquiryPhone.next(enquirymsg, ph);
next(U(usermsg), ph) == NextUserPhone.next(usermsg, ph);
end module NextPhone;

Fig. 6/37

210 A Case Study: the Mini-PABX Chap. 6

6.10.3 The Module Out Phone

Analogously, the operation out is given in Fig. 6/38.

module OutUserListOf Messages;

import Phoneldentity from Phoneldentity; all from ListOfMessages;
all except PhoneMode from PhoneModes; C, E from PhoneStates;
callTermination, answer, ringingTermination, callRequest from CallMessages;
onHold, onHoldTermination, onHoldResolved from EnquiryMessages;
C, E from PhoneMessages; send __ toPhone _ from MessagePairs;
Phone, identityOf _, phoneStateOf _, phoneModeOf __ from Phone;
connected, ringTone, dialTone, ringing from CallStates;
all from Codes; all from UserMessages;

export out to OutPhone;

operation
out: UserMessage * Phone -> ListOfMessages;

declare id, id;: Phoneldentity; code: Code; ph: Phone;

operation axioms

out(onHook, ph) ==
case phoneModeOf ph of
normal, enquiryNil:
case phoneStateOf ph of
C(connected(id;)):
send C(callTermination) toPhone id; | nil;
C(ringTone(idy)):
send C(ringingTermination) toPhone id; | nil;
E(heldBy(id)):
send E(onHoldTermination(identityOf ph) toPhone id | nil;
otherwise: nil;
end case;
enquiry(id):
case phoneStateOf ph of
C(connected(id;)):
send E(onHoldTermination(identityOf ph) toPhone id
I send C(callTermination) toPhone id; | nil;
C(ringTone(idy)):
send E(onHoldTermination(identityOf ph) toPhone id
I send C(ringingTermination) toPhone id; ! nil;
E(heldBy(id;))
send E(onHoldTermination(identityOf ph) toPhone id
I send E(onHoldTermination(identityOf ph) toPhone id, I nil;
otherwise:
send E(onHoldTermination(identityOf ph)) toPhone id | nil;
end case;
end case;

out(offHook, ph) ==
case phoneStateOf ph of
C(ringing(id;)): send C(answer) toPhone id, | nil;
otherwise: nil;
end case;

out(dialCode(code), ph) ==
case phoneStateOf ph of

Sec. 6.10 User Actions 211

C(dialTone):
case code of
phoneCode(id;):
send C(callRequest(identityOf ph)) toPhone id, | nil;
end case;
otherwise: nil;
end case;

out(button, ph) ==
case phoneModeOf ph of
normal:
case phoneStateOf ph of
C(connected(idy)):
send E(onHold) toPhone id, | nil;
otherwise: nil;
end case;
enquiryNil:
case phoneStateOf ph of
C(connected(idy)):
send C(callTermination) toPhone id, ! nil;
C(ringTone(idy)):
send C(ringingTermination) toPhone id; | nil;
E(heldBy(id,;)):
send E(onHoldTermination(identityOf ph)) toPhone id; | nil;
otherwise: nil;
end case;
enquiry(id):
case phoneStateOf ph of
C(connected(id;)):
send E(onHoldResolved) toPhone id
I send C(callTermination) toPhone id; | nil;
C(ringTone(id;)):
send E(onHoldResolved) toPhone id
I send C(ringingTermination) toPhone id; | nil;
E(heldBy(id;)):
send E(onHoldResolved) toPhone id
I send E(onHoldTermination(identityOf ph)) toPhone id; I nil;
otherwise: send E(onHoldResolved) toPhone id | nil;
end case;
end case;
end module OutUserListOf Messages;

module OutPhone;

import all from PhoneMessages; Phone from Phone;
CallMessage from CallMessages;
out from OutCallListOfMessages; EnquiryMessage from EnquiryMessages;
out from OutEnquiryListOfMessages; UserMessage from UserMessages;
out from OutUserListOf Messages; ListOfMessages from ListOf Messages;

export out;

operation
out: PhoneMessage * Phone -> ListOf Messages;

declare callmsg: CallMessage; enquirymsg: EnquiryMessage;
usermsg: UserMessage; ph: Phone;

operation axioms
out(C(callmsg), ph) == OutCallListOfMessages.out(callmsg, ph);
outGEGenquirymsg);ph)==0OutEnquiryListOf Messages.out(enquirymsg, ph);
out(UC usermsg), ph) == OutUserListOf Messages.out(usermsg, ph);

212 A Case Study: the Mini-PABX Chap. 6

end module OQutPhone;

Fig. 6/38

6.11 Conclusion

The original informal descriptions of the features of the PABX
[Steegmans84, Steegmans85] often were ambiguous and incomplete
[Jacobs86]. Because the various features were described independently, it
was impossible to overlook the interactions between them. Therefore,
designers, implementors, sales representatives and customers may interpret
the features in a different way. Detailed questions about the features (the
what) can only be answered as soon as they have been implemented either
by looking at the assembler code (the sow) or by executing the code.

As a remedy for this we have proposed a formal specification. It is our
experience that a formal specification is very useful as a standard (norm).
Detailed questions can be answered in a precise and unambiguous way
thanks to the mathematical foundations of the formal specification. We do
not assert that informal specifications are worthless. Formal and informal
specifications must be considered complementary. Therefore, each feature
was always described informally first, making use of many graphical
representations. The informal specification was used as documentation for
the formal specification, which 1is, by definition, the standard.
Furthermore, we found out that by making a formal specification we were
forced to probe the matter to the very bottom and to specify it in a very
precise and complete way.

In [Vergauwen87] a lot of other features can be found that were added
in the same way. We mention camping and intrusion, transfer, the pick-up
feature, the booking feature, a wake-up service, two kinds of conference
calls and time-outs. Thanks to the modularity, the object-oriented design
method and adapted data structures. the complexity of the PABX can be
mastered. Another important software engineering principle is abstraction.
Only the characteristics of the features were specified, not irrelevant
information (e.g., a user need not know the ITT 5400 BCS is based on a
16-bit micro-processor).

Using only constructive specifications enables rapid prototyping. Tests
and experiments can be done by designers and customers and the
specification can be tuned until the desired behaviour is obtained. In our
department an environment for algebraic specifications is under
development. This environment already consists of a syntax checker, a

Sec. 6.11 Conclusion 213

type controller, a checker for the uniqueness and completeness constraints,
an import-export checker, a checker for the constructiveness constraints,
and a reductor.

In the future we hope to build a theorem prover. Indeed, thanks to the
mathematical foundations rigorous reasoning becomes possible. Rapid
prototyping and theorem proving must be seen as complementary methods
for better understanding specifications and for gaining confidence that they
express what we have in mind. If we define the appropriate equality
operations, interesting theorems about the mini-PABX in a stable situation
are, e.g.,

e declare M: MiniPABX; phoneA, phoneB: Phone;
A, B: phoneldentity;
theorem

let
phoneA == select(phonePoolOf MiniPABX, A);
phoneB == select(phonePoolOf MiniPABX, B);
in

phoneStateOf phoneA = C(connected(B)) <=>
phoneStateOf phoneB = C(connected(A))
end let == true;

e declare M: MiniPABX; phoneA, phoneB: Phone;
A, B: phoneldentity;
theorem
let
phoneA == select(phonePoolOf MiniPABX, A);
phoneB == select(phonePoolOf MiniPABX, B);
in
phoneStateOf phoneA = C(ringtone(B)) <=>
phoneStateOf phoneB = C(ringing(A))
end let == true;

e declare M: MiniPABX; phoneA, phoneB: Phone;
A, B: phoneldentity:
theorem

let
phoneA == select(phonePoolOf MiniPABX, A);
phoneB == select(phonePoolOf MiniPABX, B);
in

phoneStateOf phoneA = E(heldBy(B)) <=>
phoneModeOf phoneB = enquiry(A)
end let == true;

214 A Case Study: the Mini-PABX Chap. 6

e declare M: MiniPABX; phoneA: Phone; A, B: phoneldentity;
theorem
let

phoneA == select(phonePoolOf MiniPABX, A);

in
(phoneStateOf phoneA = C(idle)) or
(phoneStateOf phoneA = C(ringing(B))
=> phoneModeOf phoneA = normal

end let == true;
o declare M: MiniPABX; phoneA: Phone; A, B: phoneldentity:;
theorem
let
phoneA == select(phonePoolOf MiniPABX, A);
in

(phoneStateOf phoneA = E(heldBy(B))) and
(phoneModeOf phoneA = enquiry(B))
end let == false;

e Another family of theorems is obtained by proving that all places in the
specification where error is written are not reachable when only
transformations by user actions are considered.

We believe that algebraic specifications are very suitable for specifying
data structures. However, reducing a PABX to a single monolithic data
structure is unrealistic and results in a less readable specification, because
the number of states grows out of control very rapidly [Goovaers86,
Jacobs86]. Therefore, we use an object-oriented design method. A state is
associated with the logical objects. Furthermore, the objects can
communicate with each other by sending messages. When an object
receives a message, its state can be changed and the object in turn can send
messages to other objects. This object-oriented mechanism is not supported
by the algebraic specification language. An interesting topic would be to
incorporate it in the specification language. Moreover, by allowing
messages to be be sent in parallel, concurrency can be introduced in the
language.

7. Error Handling

"Errors, like straws, upon the surface flow.
He who would search for pearls must dive below."
John Dryden

A well-defined algebraic specification does not only precisely describe an
abstract data type in its normal situations, but also in its abnormal
(exceptional) ones. A trivial example of an abnormal situation for the
abstract data type Stack is when an empty stack is popped. A well-defined
algebraic specification describes when abnormal situations occur and what
exactly happens in such cases. Error handling is of utmost importance,
especially when one deals with constructive specifications used for rapid
prototyping. An adequate error handling enhances robustness, i.e. the
ability of a software system to function even in abnormal situations.

Error handling must be introduced in algebraic specifications in such a
way that the principles of rigorous reasoning remain valid. In principle,
algebraic specification languages based on many-sorted initial algebras are
powerful enough to specify any required error handling. However, most
of them do not provide any direct support for a rigorous and readable
treatment of exceptions. In literature on algebraic specifications the
activities on error handling can be divided into two classes. There are the
activities to extend the mathematical framework so that it incorporates
error handling. Other activities treat error handling within an existing
mathematical framework. Our approach of error handling lies in the
second class. On the algebraic specification language, as described in
Chapters 3 and 4, we superimpose a notation that supports not only the
specification of error handling, but also a specification method to deal with
error handling. Following this method, algebraic specifications can be built
in two steps. In a first step, one only deals with the normal situations,
givingorisertoranvincompletenspecification. In a second step, all the
abnormal situations are treated. This two-step method increases
readability and modularity of |specifications.

216 Error Handling Chap. 7

7.1 The Need for an Error Handling System

By further elaborating the specification of the natural numbers, the need
for a direct support for a rigorous treatment of exceptions will be
illustrated. Let us add the predecessor function to the specification. A
problem arises with the predecessor of zero. Intuitively speaking, we like
to add an unsafe object to the set of natural numbers without disturbing
anything else. This is done in Fig. 7/1, where the unsafe object is called
errNat.

module Nat;
export all;
sort Nat;
constructors
zero: -> Nat;
succ: Nat -> Nat;
errNat: -> Nat;
operations
pre: Nat -> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
declare n, n;, ny: Nat;
operation axioms
pre(zero) == errNat;
pre(succ(n)) ==n;
add(zero,n) ==n;
add(suce(ny), ny) == suce(add(ny, ny));
mult(zero, n) == zero;
mult(succ(ny), ny) == add(n,, mult(ny, ny));
end module Nat;

Fig. 7/1

By defining the new constructor errNat, the completeness constraints
are not met. Indeed, what is, e.g., pre(errNat)? We can simply add the
constructor axiom and the operation axioms that are given in Fig. 7/2.

constructor axiom
succ(errNat) == errNat;

Sec. 7.1 The Need for an Error Handling System 217

operation axioms
pre(errNat) == errNat;
add(errNat, n) == errNat;
mult(errNat, n) == errNat;

Fig. 7/2

Unfortunately, in the resulting specification not all terms containing an
unsafe subterm are reduced to errNat (which is what we have in mind).
This is shown by the following equalities derived from previous axioms:

mult(zero, pre(zero)) = mult(zero, errNat) = zero

Adding new operation axioms

operation axioms
mult(n, errNat) == errNat;
add(n, errNat) == errNat;

Fig. 7/3

to introduce strict error propagation, violates the uniqueness constraints.
E.g., the term mult(zero, errNat) can be reduced to zero as well as to
errNat. The difficulties arise because the axioms of Fig. 7/1 are only
intended for normal situations, whereas the axioms of Fig. 7/2 and 7/3 are
only applicable in erroneous situations.

The problem can be solved by distinguishing explicitly between two
kinds of natural numbers using a boolean function safeNat, which is called
the safety function of the natural numbers. Firstly, we have safe objects:
natural numbers such that safeNat results in true. Secondly, we have
unsafe objects: natural numbers such that safeNat results in false. In Fig.
7/4 a specification for the natural numbers is given using this safety
function safeNat in a systematic way.

module Nat;
import Bool, true, false, not _, _ and __from Bool;
export all;
sort Nat;
constructors
zero: -> Nat;
succ: Nat -> Nat;

218 Error Handling Chap. 7

errNat: -> Nat;
operations
safeNat: Nat -> Bool;
pre: Nat -> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
declare n, n;, ny: Nat;
constructor axiom
not safeNat(n) 3> n == errNat;
operation axioms
safeNat(zero) == true;
safeNat(succ(n)) == safeNat(n);
safeNat(errNat) == false;
pre(zero) == errNat;
pre(suce(n)) ==
if safeNat(succ(n))
then n
else errNat
end if;
pre(errNat) == errNat;
add(zero, n) ==
if safeNat(n)
then n
else errNat
end if;
add(succe(ny), ny) ==
if safeNat(succ(ng)) and safeNat(ny)
then succ(add(n;, nz))
else errNat
end if;
add(errNat, n) == errNat;
mult(zero,n) =
if safeNat(n)
then zero
else errNat
end if;
mult(suce(ny), ny) ==
if safeNat(succ(ny)) and safeNat(ny)
then add(ny, mult(ny, ny))
else errNat
end if;
mult(errNat, n) == errNat;
end module Nat;

Fig. 7/4

Notice that all natural numbers are safe objects except errNat, which is an
unsafe object. An optimized version of the module Nat is given in Fig. 7/5.

Although we specified the intended abstract data type, we are not
satisfied with the specification as it is rather cumbersome. The complexity
will__increase . for _larger _specifications, resulting in wunreadable
specifications. . A good error handling mechanism must reduce this

Sec. 7.1 The Need for an Error Handling System 219

complexity, and the key information on error handling must be visible at
first sight.

module Nat;
import all from Bool;
export all;
sort Nat;
constructors
zero: -> Nat;
succ: Nat -> Nat;
errNat: -> Nat;
operations
safeNat: Nat -> Bool;
pre: Nat ~-> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
declare n, n,, n,: Nat;
constructor axiom
succ(errNat) == errNat;
operation axioms
safeNat(zero) == true;
safeNat(succ(n)) ==safeNat(n);
safeNat(errNat) == false;
pre(zero) == errNat;
pre(suce(n)) ==n;
pre(errNat) == errNat;
add(zero,n) ==n;
add(suce(ny), np) == succ(add(ny, ny));
add(errNat, n) == errNat;
mult(zero,n) ==
if safeNat(n)
then zero
else errNat
end if;
mult(suce(ny), ny) == add(ny, mult(ny, ny));
mult(errNat, n) == errNat;
end module Nat;

Fig. 7/5

We will introduce a shorthand notation to construct safety functions
and to indicate which axioms are applicable. The notation is a trade-off
between readability and the class of error situations it can handle. Also a
two-step method for designing specifications will be provided, which
enhances modularity. In a first step the specification is given with error
detection only, in a second step error handling is added.

220 Error Handling Chap. 7

7.2 Safety Functions

A boolean function that divides a set of objects into safe objects and unsafe
objects is called the safety function of the sort. For example, the function
safeNat in Fig. 7/4 is the safety function of sort Nat.

In Fig. 7/6 the safety function safeNat is defined by the syntactic
constructs that we introduce on the constructors. Every constructor has to
be marked either by $$ or ??. A constructor marked by ?? always denotes
an unsafe object (i.e. the safety function returns false). A constructor
marked by $$ denotes a safe object (i.e. the safety function returns true) if
and only if all the requested arguments of the constructor are safe objects.
A constructor argument is requested to be safe if the corresponding sort in
the rank declaration of the constructor is preceded by a propagation marker

$.

module Nat;
import all from Bool;
export all;
sort Nat;
constructors
zero: -> Nat $$;
succ: $ Nat -> Nat $$;
errNat: -> Nat ??;
operations
pre: Nat -> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
--...see Fig. 7/4 -
end module Nat;

Fig. 7/6

Here, the markers indicate the following: 1) the constructor zero
denotes a safe object; 2) a term succ(n) denotes a safe object if and only if
n denotes a safe object; 3) errNat denotes an unsafe object. This definition
of safeNat is equivalent to the one given in Fig. 7/4. The definition of the
safety function can be derived mechanically from the shorthand notation.

Generally speaking, in order to have consistent specifications, applying
the appropriate safety function to the left-hand side of a constructor axiom
must always yield the same result as applying this safety function to the
right-hand side of the constructor axiom.

Sec. 7.2 Safety Functions 221

7.3 Safety and Unsafety Markers

Safety markers and unsafety markers indicate in which situations axioms
can be applied. There are two safety markers, namely $ and $$, and three
unsafety markers, !, ? and 77. An axiom may contain more than one
marker. In that case all corresponding conditions must be met. Markers
may occur in both left-hand and right-hand sides of axioms.

e If a term in an axiom is preceded by $, the axiom is only applicable if
the term denotes a safe object. Assume that an axiom

wSt=_
contains a term t of sort S; preceded by $, the axiom is equivalent to

safeSi(t) > ... t..==..;

e If a term in an axiom is preceded by !, the axiom is only applicable if
the term denotes an unsafe object. Assume that an axiom

Wt =
contains a term t of sort S; preceded by !, the axiom is equivalent to

not safeS;(t) > ... t..==.;

o If just k terms in an axiom are preceded by ?, the axiom is only
applicable if at least one of these terms denotes an unsafe object.
Assume that an axiom

w7t Pt == Pty

contains just k terms preceded by ?, respectively of sort S;;, §;,. ... §;, .

the axiom is equivalent to

not (safeS;, (t;) and safeS;,(t,) and ... and safeS;, (t;)) >
et oty =Lt

o If a constructor or operation in an axiom is preceded by $$, the axiom is
only applicable if all the arguments of the constructor or operation
denote'a'safeobjectiAssumerthat an axiom

222 Error Handling Chap. 7

. $$ f(11, t2, eees tk) vee vees

contains a constructor or operation f declared as f: §;; *§;, * ... * §

ik ->

S;. the axiom is equivalent to

safeSll(t;) and safeS;,(t,) and ... and safeS; (t,) >
.. f(t1, L2, wees g) =

e If a constructor or operation in an axiom is preceded by ?7?, the axiom is
only applicable if at least one of the arguments of the constructor or
operation denotes an unsafe object. Assume that an axiom

.77 1(t1, L2, oo By) =

*LES

contains a constructor or operation f declared as f: §;; * S i~

S;, the.axiom is equivalent to

iz

not(safeS; (t;) and safeSlz(tp) and ... and safeS; (tx)) >
.. £(t1, t2, oo) oo =000

To avoid syntactical overloading each term may be preceded by at most
one marker. It is still allowed to use the safety functions explicitly. The
meaning of the markers is summarized in Fig. 7/7.

Marker The situation in which the axiom may be applied

$ all indicated terms denote safe objects

! all indicated terms denote unsafe objects

? at least one term preceded by ? denotes an unsafe object

$s all arguments of the indicated nonnullary operation are safe objects

” at least one argument of the indicated nonnullary operation is an unsafe object
Fig. 7/7

Notice that placing a marker § or ! before the left-hand side of an
operation axiom does not make any sense. Indeed, the marker indicates
that the operation axiom may only be applied to an expression that can be
reduced to a term denoting a safe object, respectively unsafe object. But in
order to reduce, the operation axiom must be applied. Analogously,
placing a marker ? before the left-hand side of an operation axiom does not
make any sense.

Sec. 7.3 Safety and Unsafety Markers 223

Example

In Fig. 7/8 safety and unsafety markers are used to specify the natural
numbers.

module Nat;
export all;
sort Nat;
constructors
zero: -> Nat $$;
succ: $ Nat -> Nat $$;
errNat: -> Nat 7?;
operations
pre: Nat -> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
declare n, n;, ny: Nat;
constructor axiom
t n == errNat;
operation axioms

$$ pre(zero) == errNat; 1
$$ pre(suce(n)) == n; —2
$$ add(zero, n) ==n; R
$$ add(succ(ny), ny) == succ(add(ny, np)); b
$$ mult(zero, n) == zero; —5--
$$ mult(succe(n;), ny) == add(ny, mult(ny, np)); -6 —
7? pre(n) == errNat; S
7? add(ny, n,) == errNat; 8-
?? mult(ny, ny) == errNat; —9
end module Nat;
Fig. 7/8

It is important to notice that no new concepts are introduced. We only
used a new syntactic notation. Operation axiom 6 is equivalent to

safeNat(succ(n;)) and safeNat(n,) >
mult(suce(ny), ny) == add(np, mult(ny, n,));

Operation axiom 9 is equivalent to

not(safeNat(n;) and safeNat(n,)) >
mult(n;, n,) == errNat;

224 Error Handling Chap. 7

The constructor axiom of Fig. 7/8 is equivalent to
not safeNat(n) 3 n == errNat;

The specification of Fig. 7/8 is equivalent to that of Fig. 7/4. But the
specification of Fig. 7/8 is more concise, reflecting clearly the error
handling information.

7.4 Method of Error Specification

An important feature of the proposed error handling mechanism is the
possibility to construct specifications in two steps. In a first step,
incomplete specifications are built with error detection only. Roughly
speaking, such a specification describes the operations for safe operands
only. The specification is irrelevant when the operands are unsafe. In a
second step, error handling is superimposed. This method is illustrated by
the well-known example of the stack.

First Step

In the first step, the completeness constraints are only met with respect to
the safe objects, see Fig. 7/9.

module Stack;
import Bool, true, false from Bool;
Nat, errNat from Nat;
export all;
sort Stack;
constructors
newstack: -> Stack $$;
push: $ Stack * Nat -> Stack $$;
errStack: -> Stack ?7;
operations
pop: Stack -> Stack;
top: Stack -> Nat;
isnewstack: Stack -> Bool;
declare s: Stack; n: Nat;
operation axioms
$$ pop(newstack) == errStack;
$$ pop(push(s,n)) ==s;
$$ top(newstack) == errNat;
$$ top(push(s,n)) ==n;
$$ isnewstack(newstack) == true;

Sec. 7.4 Method of Error Specification 225

$$ isnewstack(push(s, n)) == false;
end module Stack;

Fig. 7/9

Notice that pushing an unsafe natural number on a safe stack results in
a safe stack because only the first argument of the constructor push is
requested to be safe. The safety function safeStack of Fig. 7/9 is given
explicitly in Fig. 7/10.

declare s: Stack; n: Nat;

operation axioms
safeStack(newstack) == true;
safeStack(push(s, n)) == safeStack(s);
safeStack(errStack) == false;

Fig. 7/10

Although the specification given in Fig. 7/9 is incomplete (the
operations are only specified for safe operands), rapid prototyping is
already possible. Two different approaches are possible when an error
occurs. Firstly, one can always map the result of an operation with unsafe
arguments onto an unsafe object errSort of the sort of the operation.
Secondly, we can consider a large set of unsafe objects that provide a trace
to the place where the error occurred, e.g.:

top(pop(errStack))

Second Step

In a second step, information concerning error handling is added. In Fig.
7/11 the specification of Fig. 7/9 is extended with error information in
such a way that errors are propagated, except for the error recovery
operation recover that returns its argument if this argument is a safe stack,
and newstack otherwise.

module Stack;
import Bool, true, false, errBool from Bool;

226 Error Handling Chap. 7

Nat, errNat from Nat;
export all;
sort Stack;
constructors
newstack: -> Stack $$;
push: $ Stack * Nat -> Stack $$;
errStack: -> Stack ?77;
operations
pop: Stack -> Stack;
top: Stack -> Nat;
isnewstack: Stack -> Bool;
recover: Stack -> Stack;
declare s: Stack; n: Nat;
constructor axiom
!'s == errStack;
operation axioms

$$ pop(newstack) == errStack; o1 -
$$ pop(push(s, n)) ==s; .
$$ top(newstack) == errNat; I
$$ top(push(s,n)) ==n; 4
$$ isnewstack(newstack) == true; —5--
$$ isnewstack(push(s, n)) == false; 6 -
$$ recover(s) ==s; I
72 pop(s) == errStack; 8-
?? top(s) == errNat; —9
?? isnewstack(s) == errBool; -—-10--
?7? recover(s) == newstack; -—11--
end module Stack;
Fig. 7/11

Remember that the constructor axiom of Fig. 7/11 is equivalent to
not safeStack(s) 3 s == errStack;

It states that all unsafe stacks are equal to errStack.
Operation axiom 1 is equivalent to

safeStack(newstack) 2 pop(newstack) == errStack;

the condition of which is always true, and therefore $$ may be omitted.
Operation axiom 2 is equivalent to

safeStack(push(s, n)) > pop(push(s,n)) ==s;
Operation axiom 8 is equivalent to

not safeStack(s) > pop('s) == errStack;

Sec. 7.4 Method of Error Specification 227

Operation axioms 1, 2 and 8 together are equivalent to the following
unconditional operation axiom.

pop(s) ==
if safeStack(s)
then
case s of
newstack: errStack;
push(s;, n): s;;
otherwise -- unreachable -- errStack;
end case
else errStack
end if’;

Notice that these transformations can be done in a mechanical way.

7.5 Safety Conditions

Although we can already specify many interesting abstract data types, the
mechanism developed so far is not powerful enough to describe more
complex data types, e.g., bounded types. Therefore the markers $$ and 7?7
of the constructors part, will be extended to safety conditions. Safety
conditions together with propagation markers will indicate whether a
constructor denotes a safe or an unsafe object.

To illustrate the need for safety conditions, consider the example of a
bounded stack, e.g.. a stack that contains at most 100 elements. The
constructor push cannot be marked by $$ or ?? because push(
boundedstack, n) may give a safe or an unsafe object, depending on the
length of the stack. If the stack is safe and contains, e.g., 61 elements, then
the constructor push gives a safe object. But if the stack is safe and
contains 100 elements, an unsafe stack is obtained because an overflow
occurs. So the constructor push gives a safe object if and only if its first
argument is a safe object and the following boolean term, called safety
condition, is satisfied:

length(boundedstack) < 99
A safety condition is a boolean term that is associated with a

constructor. A constructor denotes a safe object if the requested arguments
are safe objects and the safety condition of the constructor is true. But if

228 Error Handling Chap. 7

one of its requested arguments is unsafe or the safety condition yields
either false or an exceptional object, the constructor denotes an unsafe
object. The safety condition is written between dollar signs following the
declaration of the constructor. Each variable used in a safety condition, is
associated with an argument of the constructor (at most one variable may
be associated with every argument).

In the safety condition of the constructor push given in Fig. 7/12, the
variable boundedstack is associated with the first argument of push. To
make an automatic association possible between the variables of a safety
condition and the arguments of the constructor, each variable has the same
name as the sort of the associated argument (but starting with a lower case
letter). If two or more arguments of a constructor have the same sort, the
variable names are distinguished by a number that indicates the argument
associated with it. The safety condition $ true $ may be abbreviated $$, the
safety condition $ false $ may be abbreviated ?7.

In Fig. 7/12 the specification of a bounded stack without error handling
is given. The stack size is limited to 100. The operation __ < __is assumed
to be defined in the module Nat.

module BoundedStack;
import Bool, true, false from Bool;
Nat, zero, suce, _ < _, errNat from Nat;
export all;
sort BoundedStack;
constructors
newstack: -> BoundedStack $$;
push: $ BoundedStack * Nat -> BoundedStack $ length(boundedstack) < 99 §;
errBoundedStack: -> BoundedStack 7?;
operations
length: BoundedStack -> Nat;
pop: BoundedStack -> BoundedStack;
top: BoundedStack -> Nat;
isnewstack: BoundedStack -> Bool;
recover: BoundedStack -> BoundedStack;
declare b: BoundedStack; n: Nat;
operation axioms
$$ length(newstack) == zero;
$$ length(push(b, n)) = succ(length(b)) ;
$$ pop(newstack) == errBoundedStack;
$$ pop(push(b, n)) ==1b;
$$ top(newstack) == errNat;
$$ top(push(b,n)) ==n;
$$ isnewstack(newstack) == true;
$$ isnewstack(push(b, n)) == false;
$$ recover(b) == b;

Sec. 7.5 Safety Conditions 229

end module BoundedStack;

Fig. 7/12

Notice that a safety condition can be interpreted as a precondition on the
constructor.

In Fig. 7/13 the safety function safeBoundedStack is given, which can
automatically be derived from the propagation marker and the safety
conditions of Fig. 7/12.

operation
safeBoundedStack: BoundedStack -> Bool;
declare b: BoundedStack; n: Nat;
operation axioms
safeBoundedStack(newstack) == true;
safeBoundedStack(push(b,n)) =
if length(b) € 99
‘then safeBoundedStack(b)
else false
end if;
safeBoundedStack(errBoundedStack) == false;

Fig. 7/13

In Fig. 7/14 the specification of a bounded stack with error handling is
given.

module BoundedStack;
import Bool, true, false, errBool from Bool;
Nat, zero, suce, _ < _, errNat from Nat;
export all;
sort BoundedStack;
constructors
newstack: -> BoundedStack $$;
push: $ BoundedStack * Nat -> BoundedStack $ length(boundedstack) < 99 §;
errBoundedStack: -> BoundedStack ??;
operations
length: BoundedStack -> Nat;
pop: BoundedStack -> BoundedStack;
top: BoundedStack -> Nat;
isnewstack: BoundedStack -> Bool;
recover: BoundedStack -> BoundedStack;
declare b: BoundedStack; n: Nat;

230 Error Handling Chap. 7

constructor axiom

! b == errBoundedStack;

operation axioms

$$ length(newstack) == zero;

$$ length(push(b, n)) == succ(length(b)) ;
$$ pop(newstack) == errBoundedStack;
$$ pop(push(b,n)) ==1b;

$$ top(newstack) == errNat;

$$ top(push(b,n)) ==n;

$$ isnewstack(newstack) == true;

$$ isnewstack(push(b, n)) == false;
$$ recover(b) == b;

72 length(b) == errNat;

?? pop(b) == errBoundedStack;

?? top(b) == errNat;

7? isnewstack(b) == errBool;

7?2 recover(b) == newstack;
end module BoundedStack;

Fig. 7/14

Notice the mutual recursive definitions of the operation length and the
safety function safeBoundedStack.
Remember that if b stands for a (safe) bounded stack of length 100,

length(push(b, zero))

is equal to errNat and not to 101 because push(b, zero) is not safe and, as
a consequence, the second operation axiom must not be applied.

A more refined error handling for the bounded stack is obtained by
distinguishing between two unsafe objects: underflow and overflow. The
resulting specification is given in Fig. 7/15.

module BoundedStack;
import Bool, true, false, errBool from Bool;
Nat, zero, suce, _ £ _, errNat from Nat;
export all;
sort BoundedStack;
constructors
newstack: -> BoundedStack $$;
push: $ BoundedStack * Nat -> BoundedStack $ length(boundedstack) < 99 §;
underflow: -> BoundedStack ??;
overflow: -> BoundedStack ?7?;
operations
length: BoundedStack -> Nat;
pop: BoundedStack -> BoundedStack;
top: BoundedStack -> Nat;

Sec. 7.5 Safety Conditions 231

isnewstack: BoundedStack -> Bool;
recover: BoundedStack -> BoundedStack;
declare b: BoundedStack; n: Nat;
constructor axioms
! push($ b, n) == overflow;
push(!b,n) ==1b;
operation axioms
$$ length(newstack) == zero;
$$ length(push(b, n)) == succ(length(b));
$$ pop(newstack) == underflow;
$$ pop(push(b,n)) ==b;
$$ top(newstack) == errNat;
$$ top(push(b, n)) ==n;
$$ isnewstack(newstack) == true;
$$ isnewstack(push(b, n)) == false;
$$ recover(b) ==b;

?? length(b) == errNat;

72 pop(b) ==1b;

7?2 top(b) == errNat;

?7? isnewstack(b) == errBool;

7? recover(b) == newstack;
end module BoundedStack;

Fig. 7/15

The first constructor axiom of Fig. 7/15 states that when a safe stack
becomes unsafe after pushing a natural number onto it, then an overflow
occurs. The second constructor axiom of Fig. 7/15 indicates that if a stack
is unsafe, pushing a natural number has no effect (i.e. an underflow
remains an underflow and an overflow remains an overflow). The
constructor axioms of Fig. 7/15 are equivalent to

constructor axioms .
safeBoundedStack(b) and not safeBoundedStack(push(b,n)) 2>
push(b, n) == overflow;
not safeBoundedStack(b) => push(b,n) ==b;

Fig. 7/16

The information whether a stack is safe or unsafe, cannot be found in the
constructor axioms. This information is localized in the safety functions.
The safety function safeBoundedStack is equivalent to

232 Error Handling

operation
safeBoundedStack: BoundedStack -> Bool;
declare b: BoundedStack; n: Nat;
operation axioms
safeBoundedStack(newstack) == true;
safeBoundedStack(push(b,n)) ==
if length(b) < 99
then safeBoundedStack(b)
else false
end if;
safeBoundedStack(underflow) == false;
safeBoundedStack(overflow) == false;

Fig. 7/17

Chap. 7

Remember that if b is unsafe, length(b) yields errNat, see Fig. 7/15.
In that case, length(b) < 99 will yield errBool, see Fig. 7/25. Because of
the definition of the ifthenelse operation, see Fig. 7/26, the right-hand side

of the second operation axiom in Fig. 7/17 will then yield false.

The Parameterized Bounded Array

Another interesting example is the specification of a bounded array, i.e. an
array with indices lying between a given lower and upper bound.
Assigning to a bounded array with an index not lying between these
bounds yields an unsafe bounded array. In Fig. 7/18 a parameterized

specification with error detection only is given.

scheme Bounded ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
initial: -> Attribute;
end requirement Attribute;

requirement OrderedIndex;

export all;
sort Index;
operations
__=_:Index * Index -> Bool;
_ € _:Index * Index -> Bool;
declare i, iy, i, i3: Index;
theorems
($i=3$i) = true;

import Bool, true, __and _, _ or _ from Bool;

Sec. 7.5 Safety Conditions 233

($iy = $ip)==($ip = $iy);

($i; =8ip) and ($ip = $i3) = ($i; =$iz) == true;

($iy < $ip) or ($iy < $iy) == true;

($i; < $ip) and ($ip € $i;) = ($i; = $iy) = true;

($iy =$i) = ($i; < $ip) = true;

($iy < $ip) and ($iy < $iz) = ($iy < $iz) == true;
end requirement OrderedIndex;

module BoundedArray;
import not _, _ and _ from Bool;
all from Attribute, OrderedIndex;
export all;
sort BoundedArray;
constructors
empty: $ Index * § Index -> BoundedArray $3;
_[_7 _1] $BoundedArray * Attribute * § Index -> BoundedArray
$ (1wb(boundedArray) < index) and (index < upb(boundedArray)) $;
operations
1wb, upb: BoundedArray -> Index;
read: BoundedArray * Index -> Attribute;
declare ba: BoundedArray; at, aty, aty: Attribute; i, iy, iy, i3: Index;
constructor axioms
not(il = iz) >
S(b&[atl/il][atz/i21)=
$(valaty/igllaty /i3 1);
iy=ip > $(balaty /iy J[aty /i3])=8$(valaty/iy1);
operation axioms
$$ 1wb(empty(iy, i)) ==iy;
$$ upb(empty(iy, ip)) == ip;
$$1wb(balat/i]) =1wb(ba);
$$upb(bafat/i])==upb(ba);
$$ read(empty(iy, ip), i3) == initial;
$$read(baat/iy] ip) =—
if iy =iy
then at
else read(ba, iy)
end if;
end module Bounded Array;
end scheme Bounded ArrayScheme;

Fig. 7/18

Notice that requirement OrderedIndex implicitly requires a safety function
safeIndex by using safety markers. The safety function safeBounded Array
of module BoundedArray is equivalent to the one of Fig. 7/19.

operation
safeBounded Array: BoundedArray -> Bool;
declare ba: BoundedArray; i, ij, ip: Index; at: Attribute;

234 Error Handling Chap. 7

operation axioms
safeBoundedArray(empty(iy, i)) == safeIndex(i;) and safeIndex(i,);
safeBoundedArray(ba[at/i]) —
if (iwb(ba) € i)and (i < upb(ba))
then safeBounded Array(ba) and safelndex(i)
else false
end if;

Fig. 7/19

Error handling is added in Fig. 7/18 resulting in Fig. 7/20.

scheme Bounded ArrayScheme [
requirement Attribute;
export all;
sort Attribute;
operation
initial, errAttribute: -> Attribute;
end requirement Attribute;

requirement OrderedIndex;
import Bool, true, errBool, __and _, _ or _ from Bool;
export all;
sort Index;
operations
__=_:Index * Index -> Bool;
_ € _:Index * Index -> Bool;
declare i, iy, iy, i3: Index;
theorems
($i=$i) == true;
(Sil =$i2)=($i2=5i1);
($iy = $iy) and ($iy = $i3) > ($i; = 8$i3) == true;
($i; < $ip Yor($i, < $i;) == true;
($i1 < slz) and (siz < $i1) > ($i1 = siz) == true;
($iy = $ip) > ($i; < $ip) == true;
($iy < $iy) and ($ip < $i3) > ($i) < $iz) == true;
?i; < ?ip == errBool;
end requirement OrderedIndex;

;

module BoundedArray;
import not _, _ and _ from Bool;
all from Attribute, OrderedIndex;
export all;
sort BoundedArray;
constructors
empty: $ Index * $ Index -> BoundedArray $$;
_{_7 _)$BoundedArray * Attribute * § Index -> BoundedArray
$ (1wb(boundedArray) < index) and (index < upb(boundedArray)) $;
operations
1wb, upb: BoundedArray -> Index;
read: BoundedArray * Index -> Attribute;

Sec. 7.5 Safety Conditions 235

declare ba: BoundedArray; at, aty, aty: Attribute; 1, iy, ip, i3z Index;
constructor axioms
not(i1 =1,) >
S(ba[atl/il][at2/i2])==
$(ba[at2/i2][at1/i1]);
i1=i2$ S(ba[atllil][atz/iz])———$(ba[atz/i2]);
operation axioms
1wb(empty(iy, ip)) ==iy;
upb(empty(iy, ip)) == i;
iwb(ba[at/i])==1wb(ba);
upb(ba[at/i]) ==upb(ba);
'$$ read(empty(iy, iy), i3) == initial;
$$read(balat/iy), ip) ==

if iy =i,
then at
else read(ba, iy)
end if;
?? read(ba, i) == errAttribute;
end module BoundedArray;

end scheme Bounded ArrayScheme;

Fig. 7/20

Another possibility is that we require that, after an object has been
assigned with a wrong index, all objects that are later assigned with a
correct index must be readable. If BoundedArrayScheme is instantiated by
taking as attributes the boolean values and as indices the natural numbers,
it must, e.g., be possible to read the element with index 3 of the array

empty(1,3)[true/1][true/ 12][true/ 3]

In Fig. 7/21 the required error handling is obtained by modifying the
safety function: the first argument of the assign constructor is not
requested to be safe. The constructor empty returns a safe bounded array
if and only if its lower and upper bound are safe indices. The assign
constructor returns an unsafe bounded array if and only if the index of the
last assigned element is an unsafe index or this index is not lying between
the given bounds.

scheme Bounded ArrayScheme [
--...see Fig. 7/20 --

constructors
empty: $ Index * $ Index -> BoundedArray $$;
assign: BoundedArray * Attribute * § Index -> BoundedArray
$ (1wb(boundedArray) < index) and (index < upb(boundedArray)) §;

--...see Fig. 7/20 --

236 Error Handling Chap. 7

end scheme Bounded ArrayScheme;

Fig. 7/21

The safety function safeBoundedArray is equivalent to the one of Fig.
7/22.

operation
safeBoundedArray: BoundedArray -> Bool;
declare ba: BoundedArray; i, iy, ip: Index; at: Attribute;
operation axioms
safeBounded Array(empty(iy, i)) == safelndex(i;) and safelndex(i,);
safeBoundedArray(ba[at/i]) ==
if (1wb(ba) < i)and (i < upb(ba))
then safelndex(i)
else false
end if;

Fig. 7/22

If BoundedArrayScheme of Fig. 7/21 is instantiated by taking as
attributes the boolean values and as indices the natural numbers, we prefer
the bounded array

empty(errNat, 5) [true /2]
to be unsafe. This bounded array is unsafe thanks to the theorem
?; € ?ip == errBool;

in the requirement OrderedIndex. Indeed, the safety condition applied to
the given bounded array does not result in true. errNat € 2 results in
errBool. The boolean operation and propagates the error object. When the
if-argument of an ifthenelse construct is not equal to true, the ifthenelse
construct is equivalent to its else-argument, which is false. As a
consequence, the safety condition applied to the given bounded array yields
false.

The Peekstack

A semi-constructive specification of the peekstack, which was discussed in
Section 2.18, is given in Fig. 7/23 using our error handling notation.

Sec. 7.5 Safety Conditions 237

scheme PeekstackScheme [
requirement Item;
export all;
sort Item;
operation
error: -> Item;
end requirement Item;

module Peekstack;

import true, false from Bool; Item, error from Item;
export all except shove;
sort Peekstack;
constructors

newstack: -> Peekstack $$;

push: $ Peekstack * Item -> Peekstack

$ case peekstack of
shove(s, it): false;
otherwise: true;
end case $;

shove: § Peekstack * Item -> Peekstack $§; -- hidden operation -~

err: -> Peekstack ?7;
operations

pop: Peekstack -> Peekstack;

read: Peekstack -> Item;

return: Peekstack -> Peekstack;

down: Peekstack -> Peekstack;
declare s: Peekstack; it: Item;
constructor axiom

?8 == err;
operation axioms
$$ pop(newstack) == err;
$$ pop(push(s, it)) ==s;
$$ pop(shove(s, it)) ==err;
$$ read(newstack) == error;
$$ read(push(s, it)) == it;
$$ read(shove(s, it)) = read(s);
$$ return(newstack) == newstack;
$$ return(push(s, it)) == push(s, it);
$$ return(shove(s, it)) = push(return(s), it);
$$ down(newstack) == err;
$$ down(push(s, it)) == shove(s, it);
$$ down(shove(s, it)) = shove(down(s), it);

7?2 pop(s) == err;
?? read(s) == error;
7? return(s) ==err;
7? down(s) == err;
end module Peckstack;
end scheme PeekstackScheme;

Fig. 7/23

238 Error Handling Chap. 7

7.6 Miscellanies

The Boolean Abstract Data Type

In the previous sections the boolean abstract data type Bool was assumed
to be defined in the usual way. All boolean operations (but the ifthenelse
construct, see below) propagate errors. The only boolean error object is
denoted by errBool. The predefined module Bool is equivalent to Fig. 7/24.

module Bool

export all;

sort Bool;

constructors
true, false: -> Bool $$;
errBool: -> Bool 77;

operations
not _: Bool -> Bool;
_and _: Bool * Bool -> Bool;
__or _: Bool * Bool -> Bool;
__=> __:Bool * Bool -> Bool;
__ <= _:Bool * Bool -> Bool;
_ <=> _:Bool * Bool -> Bool;
_ = _:Bool * Bool -> Bool;

declare b, by, by, bs: Bool;

operation axioms

not true == false; not false == true;

$b and true == $b; $b and false == false;

$b or true == true; $b or false == $b;

true => $b == $b; false => $b == true;

$b <= true == §b; $b <= false == true;

true <=> $b == $b; false <=> $b == not $b;

not errBool == errBool; ?7b; and ?by == errBool;

?b; or ?by == errBool; 7b; => ?by == errBool;

7b; <=?by == errBool; ?7b; <=> ?b; == errBool;

b =b == true;

true = false == false; true = errBool == false;

false = true == false; false = errBool == false;

errBool = true == false; errBool = false == false;
theorems

band b=="b; borb=="b;

b; and by == b, and by; by or by == b, or by;

b]_ and (bl or sbz == bl; bl or (bl and sbz) == bl;
$b and not $b == false; $b or not $b == true;

not not $b == $b;

(b; and by) and by == b; and (b, and b3);

(by or by) or by == b; or (by or by);

by and (by or b3) == (b; and by) or (b; and b3);

by or (by and bg) == (b; or b,) and (b or by);

Sec. 7.6 Miscellanies 239

$by => $by == if $b; then $b, else true end if;
bl <= bz == b2 => bl;
bl <=> bz == (bl => bz) and (bl <= bz);
by =by ==, =by;
(bl = b2) and (bz = b3) > (bl = b3);
end module Bool;

Fig. 7/24

The Abstract Data Type of the Natural Numbers

In Fig. 7/25 a specification with error handling is given for the natural
numbers including equality and inequality operations.

module Nat;
import Bool, true, false, errBool, _ or _ from Bool;
export all;
sort Nat;
constructors
zero: -> Nat $$;
succ: $ Nat -> Nat $$;
errNat: -> Nat ??;
operations
pre: Nat -> Nat;
add: Nat * Nat -> Nat;
mult: Nat * Nat -> Nat;
__=_:Nat* Nat-> Bool;
__ < __Nat * Nat -> Bool;
__ & _:Nat* Nat-> Bool;
declare n, n;, n,: Nat;
constructor axiom
!'n == errNat;
operation axioms
$$ pre(zero) == errNat;
$$ pre(suce(n)) ==n;
$$ add(zero, n) ==n;
$$ add(succ(ny), np) == succ(add(ny, ny));
$$ mult(zero, n) == zero;
$$ muit(suce(nq), np) == add(ny, mult(ny, np));
$$ (zero = zero) == true;
$$ (suce(n) = zero) == false;
$$ (zero = succ(n)) == false;
$8 (succ(ny) =suce(ny)) ==n; = ny;
$$ (n < zero) == false;
$$ (zero < succ(n)) == true;
$$ (suce(ny) < suce(ny)) ==n; < ny;
$$ (suce(ny) € suce(ny))==Cny < ny)or(ny=ny);

77 pre(n) == errNat;

240 Error Handling Chap. 7

7? add(n4, ny) == errNat;
?? mult(ny, ny) == errNat;
$ ny =1 ny ==false;

In; =$ n, == false;

I'n; =1ny == true;
7?2 (ny < ny) == errBool;

7?2 (n; < ny) == errBool;
end module Nat;
Fig. 7/25
Ifthenelse Construct

The ifthenelse construct is an example of a recovery operation. For each
sort X the language-defined ifthenelse construct is equivalent to

operation

if _ then _else __end if: Bool* X*X -> X;
declare b: Bool; x;, x5: X;
operation axioms

if true then x; else x; end if == x;;

if false then x; else x; end if == x,;

if Ib then x; else x5 end if == x,;

Fig. 7/26

Therefore, the expression

ifn=0
then x,
elsex; /n
end if

where the variable n stands for a natural number and __ / __is the division
of natural numbers, results in X; when n is bound with 0. Remember that
the order of evaluation has not been defined.

Sec. 7.6 Miscellanies 241

Markers and Case Constructs

If a safety or an unsafety marker is used in the choice of a case arm in an
axiom, this marker is only related to the choice of the case arm and not to
the whole axiom. E.g.,

declare b, by: Stack; n: Nat;
operation axiom
f(b,n)==...
case push(b, n) of
s b]_: see
! b1: ons
end case ... ;

Fig. 7/27

does not mean that b;, i.e. push(b, n), must be safe as well as unsafe,
which is in conflict. It means that if b; is safe, the first case arm must be
taken, otherwise b, is unsafe and the second case arm must be taken.

Cartesian Products of Sorts

If Cartesian products of sorts (see Section 4.11) are used, a composed object
is safe if and only if all its elementary objects are safe. Assume, e.g., that
a sort Corner is defined as the Cartesian product of the sorts Street and
Avenue:

sort Corner == Street * Avenue;

Fig. 7/28

then it stands for

L

sort Corner;
constructor
(_, _):$Street * $ Avenue -> Corner $3;

242 Error Handling Chap. 7

operations
streetOf _: Corner -> Street;
avenueOf _: Corner -> Avenue;
__[_7 street }: Corner * Street -> Corner;
_[_/ avenue J: Corner * Avenue -> Corner;
-- safeCorner: Corner -> Bool;
declare s: Street; a: Avenue; c: Corner;
operation axioms
streetOf (s,a) ==3s;
avenueOf (s, a) ==a;
c[s/ street] == (s, avenueOf c);
c{a/avenue] ==(streetOf c, a);
-- safeCorner((s, a)) == safeStreet(s) and safeAvenue(a);

Fig. 7/29

Uniqueness and Completeness Constraints

The attentive reader may have noticed that the uniqueness and
completeness constraints are not always met. E.g., in Fig. 7/14, operation
axioms of the form

$$ length(errStack) == ...;

$$ pop(errStack) == ...;

$$ top(errStack) == ...;

$$ isnewstack(errStack) == ...;

have been omitted because they would never be applied. We assumed that
the checker of the uniqueness and completeness constraints is intelligent
enough to handle such situations.

Shorthand Notation and Import Clauses

Sorts, constructors and operations that are not explicitly written down in a
module or a requirement, need not be mentioned in the import clause of the
module or the requirement. E.g., the sort Bool and the constructors true
and false were not mentioned in the import clause of module
BoundedArray of Fig. 7/18, although they were used in the equivalent
specification of the safety function in Fig. 7/19.

Sec. 7.6 Miscellanies 243

Parameterized Specifications with Error Handling

Up to now, the parameterization concept and error handling have been
defined independently in order to obtain a language with orthogonal
features. The relation between them is that when an operation safeX is
explicitly required in a requirement, the operation safeX must be explicitly
bound with the safety function of the sort that is bound with X. For
instance, if the requirement

requirement Item;
import Bool from Bool;
export all;
sort Item;
operation
safeltem: Item -> Bool;
end requirement Item;

Fig. 7/30

is required, the operation safeltem must be bound with the safety function
of the sort that is bound with Item. If the operation safeX is implicitly
required, e.g., by using safety markers as in requirement OrderedIndex of
Fig. 7/20, it will implicitly be bound with the safety function of the sort
that is bound with X. It is obvious that in both cases a safety function
must have been defined for the sort that is bound with X.

7.7 Bibliographic Notes

[Guttag78] treats neither error propagation nor error recovery. In that
article, as soon as an error is detected, UNDEFINED is returned. For
example,

TOP(Stack) -> item U { UNDEFINED }
TOP(NEWSTACK) = UNDEFINED
If UNDEFINED is a value, what is its sort? Or is TOP a partial function?

Guttag gives no precise meaning of UNDEFINED (he kept the meaning
undefined). We believe that a kind of incomplete specification is intended,

244 Error Handling Chap. 7

analogous to the first step of our error specification method. Eventually,
one must indicate what the operations do to UNDEFINED, otherwise the
benefit from working with algebras is lost [Goguen78].

[Goguen78] defines an error object and an OK function for each sort.
Axioms are replaced by conditional error axioms. These are axioms in
which terms are checked to be OK. This method is hardly supported by
their algebraic specification language, leading to a large amount of axioms
for definitions of OK functions and for error and OK propagation. Error
recovery is not provided. The method we proposed can be viewed as an
improved extension of this technique. The safety function corresponds to
the OK function introduced in [Goguen78].

In OBJ2 [Goguen84, Futatsugi85, Goguen85] subsorts are defined, see
Section 3.6. Although this concept can be defined within the framework of
many-sorted initial algebras wusing implicit coercion and retraction
functions between the sorts [Futatsugi85], a new mathematical foundation,
called Order-Sorted Algebra, is used in [Goguen85, Goguen87b]. For
example, the sort NeStack of non-empty stacks is defined as a subsort of
the sort Stack. The operations top and pop are defined for non-empty
stacks only. If, e.g., the operation top is applied to a stack, the stack is
implicitly retracted (inverse coercion) to a non-empty stack. This is a kind
of run-time type checking. If an error occurs, the rest of the term is
further reduced. In the example of the non-empty stacks the result is
then, e.g., pop(retract(newstack)). These objects are in fact unsafe
objects. No error recovery is provided although error handlers are
suggested [Futatsugi85, Goguen87c], but at the moment they have not yet
been published.

Another problem is that the mechanism of subsorts is not powerful
enough for, e.g., bounded stacks. Therefore, sort constraints, which are
related to our safety conditions, are introduced [Goguen84, Goguen85].

A new mathematical foundation is developed by Gogolla [Gogolla84al].
The sets of many-sorted algebras are heterogeneous: they are divided into
ok and error objects, corresponding with safe and unsafe objects
respectively. The functions are divided into two classes: 0.k. and unsafe
functions. Only unsafe functions may introduce errors when applied to ok
objects. This guarantees that whenever an expression consisting of ok
functions only is applied to ok arguments, it will result in an ok object.
Another important characteristic is that two different types of variables
are introduced for the same sort. Variables to which only ok objects may
be bound, and variables to which both ok and error objects may be bound.
The drawback is that functions can only be marked as o.k. or unsafe, this
is not powerful enough for more complex data types, e.g., bounded stacks.

Sec. 7.7 Bibliographic Notes 245

In the algebraic specification language PLUSS [Bidoit85b] the notions of
multi-target operators and multi-target algebras are introduced. The basic
idea is to split safe and unsafe objects into different sets. But this method
is not adequate enough for bounded types. In [Bernot86] a new
mathematical foundation is proposed. called exception algebras. Labels
may be associated with terms. This label information may be used in the
axioms. This formalism is powerful, but it is also very complex. The
formalism leaves the classical framework of many-sorted initial algebras.

8. Abstract Implementations

"Everything should be built top-down,
except the first time."
/usr/games/fortune

Working with abstract implementations, sometimes called data
refinements, is a powerful method to design and implement algebraic
specifications. It enables top-down design, top-down verification and also
top-down testing. As an introduction to abstract implementations first an
intuitive discussion of the general principles of the method is given. These
principles are then illustrated by a simple example. A detailed treatment
of abstract implementations will be worked out in the subsequent sections.

When working with abstract implementations, the software life cycle
does not consist of a single design and a single implementation phase (as
shown in Fig. 1/1), but it has several design-implementation levels
forming a pyramid-like structure, where the implementation at one level is
considered as the design-specification at the lower level. The lower the
level, the lower the degree of abstraction, i.e. the number of
implementation details increases. An example of such a pyramid-like
structure, called design-implementation structure in the sequel, is given in
Fig. 8/1. This example will be thoroughly discussed further on. One of
the main reasons why the idea of abstract implementations is so important
is that each level can be tested through rapid prototyping and verified
using equational reasoning (see Section 2.13) and induction (see Section
2.17), before the lower levels need be constructed. Therefore, working
with abstract implementations improves correctness, extendibility,
reusability, modularity and continuity of software systems. By combining
the technique of abstract implementations with the technique of
parameterization, a high degree of reusability can be obtained. It will be
illustrated by two examples: the stack and the symbol table.

Given an abstract data type A consisting of a set of objects and a
number of functions. As a first step, the abstract data type A will be
algebraically specified by a module A defining among others the sort A. In
the sequel, specifications will be (semi-)constructive (see Chapter 4). So,
in the module A a distinction is made between constructors and operations.
Clearly; A-may import fromsother modules. The module A together with
all its imported (directly and indirectly) modules constitute the highest
level of the design-implementation structure. Due to rapid prototyping

Sec. 8.0 247

based on direct implementation (see Chapter 4), the modules at this level
can be directly executed and tested so that experiments with the software
system are possible at an early stage of its development.

As an example, consider the highest level of the design-implementation
structure for the symbol table in Fig. 8/1. The module Symboltable
defines the sort Symboltable by means of a number of constructors and
operations. The module Symboltable imports from the modules Identifier,
Attribute and Bool. The specification details of the module Symboltable
will be given in Section 8.5.

In a second step, the module A is implemented by assigning a specific
meaning to the objects (constructors in A) and functions (operations in A)
of the abstract data type A. The implementation of module A is itself a
module, called implementation module and denoted lA. The
implementation module lA is defined in terms of the sort, constructors and
operations of another module B. Clearly, A may still import from other
modules. The implementation module lA and all its imported modules
constitute the second level of the design-implementation structure. As
with the first level of the structure, the modules of the second level can be
directly executed and tested by rapid prototyping based on direct
implementation. By using the implementation module lA as
implementation for module A instead of using the direct implementation
of module A, direct execution at the first level will be more efficient.

/-4\
A B means A imports from B

means@ls specified by means A is implemented by |A

&
i

S ———————

Fig. 8/1 (continued)

Chap. 8

248 Abstract Implementations

SIIBIaQUSEH 1eN

18 *31d

NQIIY IOINULP] ANINQINMIVIdANJIULP] ISIT [00g Arvirypapunog 10ogAerrypapunog Surddepnt

A
!
1
I

e —————————— = — - = =]

S N

yowigt 1eNAeny Aewry jeN joog 3urddepy

W/@\\

P N

joog enqumy Jeynuepl Suiddey yomg zﬁzowa%q
!
L}
I
{
[}
1

[00g °INQUNY IBIFIUSP] AQEIOqUWAS

6»

JrqeIfoquAg

{ 19A9]

€ 19A9]

T 19A9]

1 19A°]

Sec. 8.0 249

During the second step, one can also verify that the implementation A
meets its specification A. Correctness of implementation will be further
explained in Section 8.3. An important aspect of the technique of abstract
implementations is that rapid prototyping and verification at level 2 is
based on the specifications of the imported modules of 1A, but not on their
implementations.

In our example shown in Fig. 8/1, the symbol table is implemented as a
stack of mappings from identifiers onto attributes. The programs
implementing the symbol table have the form of axioms. These programs
constitute the implementation module {Symboltable, which is defined in
terms of the sort, constructors and operations imported from module
Stack. {Symboltable also imports from the modules Mapping, Identifier,
Attribute and Bool. All these modules constitute level 2 of the design-
implementation structure of the symbol table.

In a next step, one of the modules for which no implementation module
is provided, can be implemented in turn as explained in step 2. It yields
the implementation module IC and a number of modules imported by {C.
Hereafter, all modules for which no implementation modules are yet
provided constitute a next level. This process of implementation
refinement goes on until one obtains a level of modules that has a direct
implementation that meets the claimed efficiency requirement. Consider
again the symbol table as shown in Fig. 8/1. The stack is implemented by
an ArrayNat object. Fach ArrayNat object consists of an array of
mappings and a natural number referring to the first free array entry. The
programs implementing the module Stack constitute the implementation
module {Stack. The implementation module IStack imports from modules
ArrayNat, Array. Mapping, Nat and Bool. Level 3 of the design-
implementation structure consists of the modules !Symboltable, {Stack,
Mapping, ArrayNat, Array, Nat, Identifier, Attribute and Bool. Direct
execution at level 3 is already much more efficient than at level 2. Level 4
can be obtained by providing an implementation for, e.g., Mapping. This
implementation of Mapping can be constructed independently from the
implementation of Stack. At level 4, Mapping is implemented by a module
in which an efficient hashcoding technique is used for the retrieval of
information. All specification details of the four-level structure of the
Symboltable, as shown in Fig. 8/1, will be given in Section 8.5.

250 Abstract Implementations Chap. 8

8.1 Example of the Stacks

In this section the method of abstract implementations is introduced by
means of a simple example: the stack of natural numbers. As a first
approximation, error handling, error recovery and parameterization are not
considered. They will be discussed in Sections 8.4 and 8.5. Precise
definitions of the concepts of abstract implementations will be given in
Section 8.2. The design-implementation structure is shown in Fig. 8/2.

@

1
1

level 1 :
]
<

Stack Nat Bool
1
[}
[}
|
fevel 2 ; m

IStack ArrayNat Array Nat Bool

Fig. 8/2

At level 1, we have the module Stack specifying the abstract data type
Stack. Stack imports from the modules Nat and Bool. At level 2, the
module Stack is implemented yielding the implementation module {Stack,
which is defined in terms of the module ArrayNat, defining pairs of arrays
and natural numbers. The implementation module {Stack imports from
the modules ArrayNat, Array, Nat and Bool.

The Module Stack

module Stack;
import Bool, true, false from Bool;

Sec. 8.1 Example of the Stacks 251

Nat, zero from Nat rename Nat as Item, zero as errltem;
export all;
sort Stack;
constructors

newstack: -> Stack;

push: Stack * Item -> Stack;
operations

pop: Stack -> Stack;

top: Stack -> Item;

replace: Stack * Item -> Stack;

isnewstack: Stack -> Bool;
declare s: Stack; it, it;, ity: Item;
operation axioms

pop(newstack) == newstack;

pop(push(s, it)) ==s;

top(newstack) == errltem;

top(push(s, it)) ==it;

replace(newstack, it) == newstack;

replace(push(s, ity), ity) == push(s, ity);

isnewstack(newstack) == true;

isnewstack(push(s, it)) == false;
end module Stack;

Fig. 8/3

The Module |Stack

module Stack;
import ArrayNat, (_, _), arrayOf _, natOf _ from ArrayNat;
Array, empty, _[_/ __], read from Array; Bool from Bool;
Nat, zero, succ, pre, _ =_ , < _ from Nat
rename Nat as Item, zero as 0, zero as errltem, succas __+ 1, preas __ - 1;
operations
lnewstack: -> ArrayNat;
lpush: ArrayNat * Item -> ArrayNat;
lpop: ArrayNat -> ArrayNat;
ltop: ArrayNat -> Item;
lreplace: ArrayNat * Item -> ArrayNat;
lisnewstack: ArrayNat -> Bool;
declare an: ArrayNat; it: Item;
operation axioms
lnewstack == (empty, 0);
lpush(an, it) == (arrayOf an [it / natOf an], natOf an + 1);
lpop(an) ==
if natOf an=0
then an
else (arrayOf an, natOf an-1)
end if;
ltop(an) ==
if natOf an=0

252 Abstract Implementations Chap. 8

then errltem
else read(arrayOf an, natOf an - 1)
end if;
lreplace(an, it) ==
if natOf an =0
then an
else (arrayOf an [it / natOf an - 1], natOf an)
end if;
lisnewstack(an) == natOf an = 0;
end module |Stack;

Fig. 8/4

The Module ArrayNat

module ArrayNat;
import Array from Array; Nat from Nat;
export all;
sort ArrayNat == Array * Nat;
-- As explained in Section 4.11, the Cartesian product stands for:
-- sort ArrayNat;
-- constructor
- (_,_): Array * Nat -> ArrayNat;
-- operations
-- arrayOf _: ArrayNat -> Array;
-- natOf _: ArrayNat -> Nat;
- I _/ array |: ArrayNat * Array -> ArrayNat;
-~ _[_/ nat) ArrayNat * Nat -> ArrayNat;
-- declare a: Array; n: Nat; an: ArrayNat;
-- operation axioms
-- arrayOf (a,n) ==a;
-- natOf (a,n)==n;
- an{a/array]==(a, natOf an);
-- an[n/nat]==(arrayOf an, n);
end module ArrayNat;

Fig. 8/5

The Module Array

module Array;
import Bool, true, false from Bool; Nat, zero, _ = _ from Nat

Sec. 8.1 Example of the Stacks 253

rename Nat as Index, Nat as Attribute, zero as initial;
export all;
sort Array;
constructors
empty: -> Array;
_[_7 _) Array * Attribute * Index -> Array;
operations
read: Array * Index -> Attribute;
isundefined: Array * Index -> Bool;
declare a: Array; i, iy, ip: Index; at, aty, aty: Attribute;
constructor axioms
no‘t(i1=i2)$ (ar[at1/i1][at2/i2])===(ar[atz/i2][at1/i1]);
Car[aty/illaty/il)==Carlaty/i]);
operation axioms
isundefined(empty, i) == true;
isundefined(al[at/i; }, i) =
if i; = i then false else isundefined(a, i) end if;
read(empty, i) == initial;
read(alat/iy i) ==
if i) = i, then at else read(a, i,) end if;
end module Array;

Fig. 8/6

Notice that the facility of renaming sorts, constructors and operations
that are imported from other modules enhances readability. As an
example, sort Nat is imported by the modules Stack and Array, but
renamed differently. Stack and Array have